Advanced Search
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
Wu Cheng-guang, Deng Bin, Su Wu-ge, Wang Hong-qiang, Qin Yu-liang. ISAR Imaging Method Based on the Bayesian Group-sparse Modeling[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2941-2947. doi: 10.11999/JEIT141624
Citation: YUAN Zuxia, CHENG Ming, GUO Kefeng. Performance Analysis of Satellite-Aerial-Terrestrial Integrated Network Based on Uplink NOMA Technology[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2666-2676. doi: 10.11999/JEIT220379

Performance Analysis of Satellite-Aerial-Terrestrial Integrated Network Based on Uplink NOMA Technology

doi: 10.11999/JEIT220379
Funds:  The National Natural Science Foundation of China (62001517), The Postgraduate Research Practice Innovation Program of Jiangsu Province (KYCX19_0896)
  • Received Date: 2022-04-01
  • Accepted Date: 2022-07-13
  • Rev Recd Date: 2022-07-10
  • Available Online: 2022-07-15
  • Publish Date: 2022-08-17
  • The system Ergodic Sum Rate (ESR) performance of a mixed Free Space Optical/ Radio Frequency (FSO/RF) Satellite-Aerial-Terrestrial Integrated Network (SATIN) combining multi-antenna beamforming scheme and uplink Non-Orthogonal Multiple Access (NOMA) technology is investigated in this paper. Firstly, a beamforming scheme using statistical channel state information is proposed to maximize the ESR of the considered system, where multi-antenna UAV is deployed with uplink NOMA technology. Secondly, under the assumption that the satellite-UAV link with FSO undergoes Gamma-Gamma fading while the UAV-terrestrial links adopted RF experience correlated Rayleigh fading, the closed-form expression for ESR of the considered SATIN is derived. Finally, numerical results are provided to validate the theoretical analysis. The simulation results show that, compared with the Orthogonal Multiple Access (OMA) scheme, the proposed scheme improves the system ESR, and the proposed scheme has the performance superiority over the other benchmark beamforming scheme.
  • [1]
    KODHELI O, LAGUNAS E, MATURO N, et al. Satellite communications in the new space era: A survey and future challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(1): 70–109. doi: 10.1109/COMST.2020.3028247
    [2]
    徐常志, 靳一, 李立, 等. 面向6G的星地融合无线传输技术[J]. 电子与信息学报, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363

    XU Changzhi, JIN Yi, LI Li, et al. Wireless transmission technology of satellite-terrestrial integration for 6G mobile communication[J]. Journal of Electronics &Information Technology, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363
    [3]
    HUANG Qingquan, LIN Min, WANG Junbo, et al. Energy efficient beamforming schemes for satellite-aerial-terrestrial networks[J]. IEEE Transactions on Communications, 2020, 68(6): 3863–3875. doi: 10.1109/TCOMM.2020.2978044
    [4]
    KAMGA G N, AÏSSA S, RASETHUNTSA T R, et al. Mixed RF/FSO communications with outdated-CSI-based relay selection under double generalized Gamma turbulence, generalized pointing errors, and Nakagami-m fading[J]. IEEE Transactions on Wireless Communications, 2021, 20(5): 2761–2775. doi: 10.1109/TWC.2019.2954866
    [5]
    XU Guanjun and SONG Zhaohui. Performance analysis for mixed κ-μ fading and M-distribution dual-hop radio frequency/free space optical communication systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1517–1528. doi: 10.1109/TWC.2020.3034104
    [6]
    HUANG Qingquan, LIN Min, ZHU Weiping, et al. Uplink massive access in mixed RF/FSO satellite-aerial-terrestrial networks[J]. IEEE Transactions on Communications, 2021, 69(4): 2413–2426. doi: 10.1109/TCOMM.2021.3049364
    [7]
    WANG Lina, WU Yanan, ZHANG Haijun, et al. Resource allocation for NOMA based space-terrestrial satellite networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 1065–1075. doi: 10.1109/TWC.2020.3030704
    [8]
    JAMALI M V and MAHDAVIFAR H. Uplink non-orthogonal multiple access over mixed RF-FSO systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3558–3574. doi: 10.1109/TWC.2020.2974947
    [9]
    ZHAO Jinlong, YUE Xinwei, KANG Shaoli, et al. Joint effects of imperfect CSI and SIC on NOMA based satellite-terrestrial systems[J]. IEEE Access, 2021, 9: 12545–12554. doi: 10.1109/ACCESS.2021.3051306
    [10]
    LIN Zhi, LIN Min, WANG Junbo, et al. Joint beamforming and power allocation for satellite-terrestrial integrated networks with non-orthogonal multiple access[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 657–670. doi: 10.1109/JSTSP.2019.2899731
    [11]
    GRADSHTEYN I S and RYZHIK I M. Table of Integrals, Series, and Products[M]. 7th ed. San Diego, USA: Academic Press, 2007.
    [12]
    ANTONINI M, BETTI S, CARROZZO V, et al. Feasibility analysis of a HAP-LEO optical link for data relay purposes[C]. 2006 IEEE Aerospace Conference, Big Sky, USA, 2006: 1–7.
    [13]
    LI Mi, HONG Yifeng, ZENG Cheng, et al. Investigation on the UAV-to-satellite optical communication systems[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 2128–2138. doi: 10.1109/JSAC.2018.2864419
    [14]
    TRINH P V, DANG N T, and PHAM A T. All-optical relaying FSO systems using EDFA combined with optical hard-limiter over atmospheric turbulence channels[J]. Journal of Lightwave Technology, 2015, 33(19): 4132–4144. doi: 10.1109/JLT.2015.2466432
    [15]
    ERTEL R B, CARDIERI P, SOWERBY K W, et al. Overview of spatial channel models for antenna array communication systems[J]. IEEE Personal Communications, 1998, 5(1): 10–22. doi: 10.1109/98.656151
    [16]
    LIN Min, YANG Lvxi, ZHU Weiping, et al. An open-loop adaptive space-time transmit scheme for correlated fading channels[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(2): 147–158. doi: 10.1109/JSTSP.2008.922482
    [17]
    YUAN Jide, MATTHAIOU M, JIN Shi, et al. Tightness of Jensen’s bounds and applications to MIMO communications[J]. IEEE Transactions on Communications, 2017, 65(2): 579–593. doi: 10.1109/TCOMM.2016.2623945
    [18]
    MULLEN K. The Teacher's corner: A note on the ratio of two independent random variables[J]. The American Statistician, 1967, 21(3): 30–31. doi: 10.1080/00031305.1967.10479818
    [19]
    GOLUB G H and VAN LOAN C F. Matrix Computations[M]. 2nd ed. Baltimore: The Johns Hopkins University Press, 1989.
    [20]
    WOLFRAM I. Mathematica edition: Version 12.0 [OL]. https://www.wolfram.com, 2020.
    [21]
    ARTI M K and BHATNAGAR M R. Beamforming and combining in hybrid satellite-terrestrial cooperative systems[J]. IEEE Communications Letters, 2014, 18(3): 483–486. doi: 10.1109/LCOMM.2014.012214.132738
    [22]
    HUANG Qingquan, LIN Min, AN Kang, et al. Secrecy performance of hybrid satellite-terrestrial relay networks in the presence of multiple eavesdroppers[J]. IET Communications, 2018, 12(1): 26–34. doi: 10.1049/iet-com.2017.0948
  • Cited by

    Periodical cited type(6)

    1. 吴悠,王艳红,冯俊杰. 基于改进平滑L0范数的ISAR成像算法. 电脑知识与技术. 2022(21): 36-38 .
    2. 王欢,李峰,宋思盛,姜洋. 基于匈牙利算法的多分量微动信号提取方法. 火控雷达技术. 2022(04): 32-37 .
    3. 胡仁荣,童宁宁,何兴宇,苏于童. 模式耦合稀疏贝叶斯MIMO雷达成像. 空军工程大学学报(自然科学版). 2018(04): 66-71 .
    4. 俞翔,朱岱寅,毛新华. 基于距离徙动轨迹的空间目标ISAR联合运动补偿算法. 数据采集与处理. 2018(04): 683-691 .
    5. 马俊涛,高梅国,胡文华,熊娣,史林. 空间目标多站ISAR优化布站与融合成像方法. 电子与信息学报. 2017(12): 2834-2843 . 本站查看
    6. 俞翔,朱岱寅,李俊强,云涛,黄翔飞. 基于距离徙动轨迹的空间目标ISAR距离对准算法. 系统工程与电子技术. 2017(04): 775-781 .

    Other cited types(7)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (722) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return