Citation: | DAI Zhijiang, KONG Shuman, LI Mingyu, CAI Tianfu, JIN Yi, XU Changzhi. A Digital Predistortion Technique Based on Improved Sparse Least Squares Twin Support Vector Regression[J]. Journal of Electronics & Information Technology, 2023, 45(2): 418-426. doi: 10.11999/JEIT220372 |
[1] |
BEIDAS B F. Radio-frequency impairments compensation in ultra high-throughput satellite systems[J]. IEEE Transactions on Communications, 2019, 67(9): 6025–6038. doi: 10.1109/TCOMM.2019.2926031
|
[2] |
DOSHI R J, GHODGAONKAR D, BHARDHWAJ P S, et al. Accurate characterization of high power SSPA under multicarrier operation for satellite communications[C]. 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kerala, India, 2017: 818–823.
|
[3] |
黄明光, 朱丹, 何俊, 等. Ka波段宽频带高线性空间行波管研制[J]. 电子与信息学报, 2017, 39(11): 2777–2781. doi: 10.11999/JEIT161267
HUANG Mingguang, ZHU Dan, HE Jun, et al. Development of Ka-band broadband, high-linearity space traveling wave tube[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2777–2781. doi: 10.11999/JEIT161267
|
[4] |
CHEN Wenhua, ZHANG Silong, LIU Youjiang, et al. Efficient pruning technique of memory polynomial models suitable for PA behavioral modeling and digital predistortion[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(10): 2290–2299. doi: 10.1109/TMTT.2014.2351779
|
[5] |
ABDELHAFIZ A, KWAN A, HAMMI O, et al. Digital predistortion of LTE-A power amplifiers using compressed-sampling-based unstructured pruning of Volterra series[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(11): 2583–2593. doi: 10.1109/TMTT.2014.2360845
|
[6] |
REINA-TOSINA J, ALLEGUE-MARTÍNEZ M, CRESPO-CADENAS C, et al. Behavioral modeling and predistortion of power amplifiers under sparsity hypothesis[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(2): 745–753. doi: 10.1109/TMTT.2014.2387852
|
[7] |
LI Mingyu, YANG Zhenxing, ZHANG Zhongming, et al. Sparsity adaptive estimation of memory polynomial based models for power amplifier behavioral modeling[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(5): 370–372. doi: 10.1109/LMWC.2016.2549024
|
[8] |
BECERRA J A, MADERO-AYORA M J, REINA-TOSINA J, et al. A doubly orthogonal matching pursuit algorithm for sparse predistortion of power amplifiers[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(8): 726–728. doi: 10.1109/LMWC.2018.2845947
|
[9] |
赵辉, 莫谨荣, 王薇, 等. OFDM系统中基于压缩感知的非线性失真恢复研究[J]. 电子与信息学报, 2021, 43(7): 1907–1912. doi: 10.11999/JEIT200374
ZHAO Hui, MO Jinrong, WANG Wei, et al. Research on nonlinear distortion recovery based on compressed sensing in OFDM system[J]. Journal of Electronics &Information Technology, 2021, 43(7): 1907–1912. doi: 10.11999/JEIT200374
|
[10] |
BECERRA J A, MADERO-AYORA M J, REINA-TOSINA J, et al. A reduced-complexity doubly orthogonal matching pursuit algorithm for power amplifier sparse behavioral modeling[C]. 2019 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), Orlando, USA, 2019: 1–3.
|
[11] |
BECERRA J A, AYORA M J M, REINA-TOSINA J, et al. Sparse identification of Volterra models for power amplifiers without pseudoinverse computation[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(11): 4570–4578. doi: 10.1109/TMTT.2020.3016967
|
[12] |
CRESPO-CADENAS C, MADERO-AYORA M J, BECERRA J A, et al. A fast sparse Bayesian pursuit approach for power amplifier linearization[C]. 2021 IEEE MTT-S International Wireless Symposium (IWS), Nanjing, China, 2021: 1–3.
|
[13] |
PENG Jun, HE Songbai, WANG Bingwen, et al. Digital predistortion for power amplifier based on sparse Bayesian learning[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2016, 63(9): 828–832. doi: 10.1109/TCSII.2016.2534718
|
[14] |
BECERRA J A, MADERO-AYORA M J, NOGUER R G, et al. On the optimum number of coefficients of sparse digital predistorters: A Bayesian approach[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(12): 1117–1120. doi: 10.1109/LMWC.2020.3027878
|
[15] |
LIU Zhijun, HU Xin, WANG Weidong, et al. A joint PAPR reduction and digital predistortion based on real-valued neural networks for OFDM systems[J]. IEEE Transactions on Broadcasting, 2022, 68(1): 223–231. doi: 10.1109/TBC.2021.3132158
|
[16] |
WANG Zonghao, CHEN Wenhua, SU Gongzhe, et al. Low computational complexity digital predistortion based on direct learning with covariance matrix[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(11): 4274–4284. doi: 10.1109/TMTT.2017.2690290
|
[17] |
ZHANG Yikang, LI Gang, LI Hongmin, et al. Simplified vector decomposition time-delay neural network model for RF power amplifier modeling and digital predistortion[C]. 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Nanjing, China, 2021: 1–3.
|
[18] |
CAI Jialin, YU Chao, SUN Lingling, et al. Dynamic behavioral modeling of RF power amplifier based on time-delay support vector regression[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(2): 533–543. doi: 10.1109/TMTT.2018.2884414
|
[19] |
XU Jin, JIANG Weiliang, MA Linhua, et al. Augmented time-delay twin support vector regression-based behavioral modeling for digital predistortion of RF power amplifier[J]. IEEE Access, 2019, 7: 59832–59843. doi: 10.1109/ACCESS.2019.2915281
|
[20] |
CAI Tianfu, LI Mingyu, YAO Yao, et al. An improved nonlinear smooth twin support vector regression based-behavioral model for joint compensation of frequency-dependent transmitter nonlinearities[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31(6): e22636. doi: 10.1002/mmce.22636
|
[21] |
CHAPELLE O. Training a support vector machine in the primal[J]. Neural Computation, 2007, 19(5): 1155–1178. doi: 10.1162/neco.2007.19.5.1155
|
[22] |
SUYKENS J A K and VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293–300. doi: 10.1023/A:1018628609742
|
[23] |
CHEN Li and ZHOU Shuisheng. Sparse algorithm for robust LSSVM in primal space[J]. Neurocomputing, 2018, 275: 2880–2891. doi: 10.1016/j.neucom.2017.10.011
|
[24] |
ZHOU Shuisheng. Sparse LSSVM in primal using Cholesky factorization for large-scale problems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4): 783–795. doi: 10.1109/TNNLS.2015.2424684
|