Advanced Search
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
FU Haosheng, HONG Ling, DAI Fengzhou. Off-grid Imaging Method for Computational Microwave Imaging System of Metamaterial Aperture Based on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4075-4084. doi: 10.11999/JEIT220363
Citation: FU Haosheng, HONG Ling, DAI Fengzhou. Off-grid Imaging Method for Computational Microwave Imaging System of Metamaterial Aperture Based on Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4075-4084. doi: 10.11999/JEIT220363

Off-grid Imaging Method for Computational Microwave Imaging System of Metamaterial Aperture Based on Sparse Bayesian Learning

doi: 10.11999/JEIT220363
  • Received Date: 2022-03-31
  • Rev Recd Date: 2022-07-05
  • Available Online: 2022-07-11
  • Publish Date: 2022-12-16
  • Computational microwave imaging based on metamaterial aperture can be considered as microwave compression sensing imaging. The imaging effect of this imaging method is seriously affected by the grid mismatch error. In this paper, a Two-Dimensional (2D) off-grid observation model based on Sinc interpolation function is constructed by analyzing the reconstruction process of 2D scene in the computational microwave imaging system for metamaterial aperture. On this basis, an Off-Grid imaging method using Sinc Interpolation based on Sparse Bayesian Learning (OGSISBL) is proposed. Under the framework of the expectation maximization algorithm, the amplitude and position of the return of the scatterers are recovered, and the off-grid error is calibrated. The performance of the proposed algorithm is verified by imaging the simulation data of the computing microwave imaging system based on metamaterial aperture. The results show that the proposed algorithm has strong robustness.
  • loading
  • [1]
    吴振华. 单通道超材料孔径雷达成像算法研究[D]. [博士论文], 西安电子科技大学, 2019.

    WU Zhenhua. Research on imaging algorithms of monostatic metamaterial apertures-based radar[D]. [Ph. D. dissertation], Xidian University, 2019.
    [2]
    PENG Rixi, YURDUSEVEN O, FROMENTEZE T, et al. Advanced processing of 3D computational microwave polarimetry using a near-field frequency-diverse antenna[J]. IEEE Access, 2020, 8: 166261–166272. doi: 10.1109/ACCESS.2020.3021418
    [3]
    HOANG T V, FUSCO V, FROMENTEZE T, et al. Computational polarimetric imaging using two-dimensional dynamic metasurface apertures[J]. IEEE Open Journal of Antennas and Propagation, 2021, 2: 488–497. doi: 10.1109/OJAP.2021.3069320
    [4]
    SLEASMAN T A, IMANI M F, DIEBOLD A V, et al. Implementation and characterization of a two-dimensional printed circuit dynamic metasurface aperture for computational microwave imaging[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(4): 2151–2164. doi: 10.1109/TAP.2020.3027188
    [5]
    ZHAO Mengran, ZHU Shitao, HUANG Huilin, et al. Frequency-diverse metamaterial cavity antenna for microwave coincidence imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(6): 1103–1107. doi: 10.1109/LAWP.2021.3073679
    [6]
    YURDUSEVEN O, GOWDA V R, GOLLUB J N, et al. Printed aperiodic cavity for computational and microwave imaging[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(5): 367–369. doi: 10.1109/LMWC.2016.2548443
    [7]
    ZHAO Mengran, ZHU Shitao, HUANG Huilin, et al. Frequency-diverse metasurface antenna with hybrid bunching methods for coincidence imaging[J]. IEEE Access, 2020, 8: 137711–137719. doi: 10.1109/ACCESS.2020.3012545
    [8]
    LUO Zhenlong, CHENG Yongqiang, CAO Kaicheng, et al. Microwave computational imaging in frequency domain with reprogrammable metasurface[J]. Journal of Electronic Imaging, 2018, 27(6): 063019. doi: 10.1117/1.JEI.27.6.063019
    [9]
    马彦恒, 侯建强, 李根, 等. 基于方位向信息分离的机动SAR成像算法[J]. 电子与信息学报, 2021, 43(2): 364–371. doi: 10.11999/JEIT190757

    MA Yanheng, HOU Jianqiang, LI Gen, et al. Maneuvering SAR imaging algorithms based on the separation of azimuthal motion information[J]. Journal of Electronics &Information Technology, 2021, 43(2): 364–371. doi: 10.11999/JEIT190757
    [10]
    刘新, 阎焜, 杨光耀, 等. UWB-MIMO穿墙雷达三维成像与运动补偿算法研究[J]. 电子与信息学报, 2020, 42(9): 2253–2260. doi: 10.11999/JEIT190356

    LIU Xin, YAN Kun, YANG Guangyao, et al. Study on 3D imaging and motion compensation algorithm for UWB-MIMO through-wall radar[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2253–2260. doi: 10.11999/JEIT190356
    [11]
    DUARTE M F, DAVENPORT M A, TAKHAR D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83–91. doi: 10.1109/MSP.2007.914730
    [12]
    YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38–43. doi: 10.1109/TSP.2012.2222378
    [13]
    YOU Kangyong, GUO Wenbin, LIU Yueliang, et al. Grid evolution: Joint dictionary learning and sparse Bayesian recovery for multiple off-grid targets localization[J]. IEEE Communications Letters, 2018, 22(10): 2068–2071. doi: 10.1109/LCOMM.2018.2863374
    [14]
    JAGANNATH R and HARI K V S. Block sparse estimator for grid matching in single snapshot DoA estimation[J]. IEEE Signal Processing Letters, 2013, 20(11): 1038–1041. doi: 10.1109/LSP.2013.2279124
    [15]
    DAI Jisheng, BAO Xu, XU Weichao, et al. Root sparse Bayesian learning for off-grid DOA estimation[J]. IEEE Signal Processing Letters, 2017, 24(1): 46–50. doi: 10.1109/LSP.2016.2636319
    [16]
    WAX M and ADLER A. Direction of arrival estimation in the presence of model errors by signal subspace matching[J]. Signal Processing, 2021, 181: 107900. doi: 10.1016/j.sigpro.2020.107900
    [17]
    FAN Bo, ZHOU Xiaoli, CHEN Shuo, et al. Sparse Bayesian perspective for radar coincidence imaging with model errors[J]. Mathematical Problems in Engineering, 2020, 2020: 9202654. doi: 10.1155/2020/9202654
    [18]
    BURNSIDE W. Aperture antennas and diffraction theory[J]. IEEE Antennas and Propagation Society Newsletter, 1983, 25(1): 21–22. doi: 10.1109/MAP.1983.27664
    [19]
    TZIKAS D G, LIKAS A C, and GALATSANOS N P. The variational approximation for Bayesian inference[J]. IEEE Signal Processing Magazine, 2008, 25(6): 131–146. doi: 10.1109/msp.2008.929620
    [20]
    DAI Fengzhou, ZHANG Shuo, LI Long, et al. Enhancement of metasurface aperture microwave imaging via information-theoretic waveform optimization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5109512. doi: 10.1109/TGRS.2022.3144286
    [21]
    TIPPING M. Sparse Bayesian learning and the relevance vector machine[J]. The Journal of Machine Learning Research, 2001, 1: 211–244. doi: 10.1162/15324430152748236
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (702) PDF downloads(154) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return