Advanced Search
Volume 45 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
JIANG Weiheng, DUAN Yaoxing, LI Mingyu, JIN Yi, XU Changzhi, LI Li. A Digital Predistortion Technique Based on the Dimension Weighted Blind K-Nearest Neighbor Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(2): 446-454. doi: 10.11999/JEIT220302
Citation: JIANG Weiheng, DUAN Yaoxing, LI Mingyu, JIN Yi, XU Changzhi, LI Li. A Digital Predistortion Technique Based on the Dimension Weighted Blind K-Nearest Neighbor Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(2): 446-454. doi: 10.11999/JEIT220302

A Digital Predistortion Technique Based on the Dimension Weighted Blind K-Nearest Neighbor Algorithm

doi: 10.11999/JEIT220302
Funds:  The National Natural Science Foundation of China (62171068, 62001061), The QingNian Project of Science and Technology Research Program of Chongqing Education Commission of China (KJQN201902403)
  • Received Date: 2022-03-21
  • Rev Recd Date: 2022-09-19
  • Available Online: 2022-09-27
  • Publish Date: 2023-02-07
  • In traditional Digital PreDistortion (DPD) models, the same set of polynomial models and the same memory model are usually used to linearize the Power Amplifier (PA) at all input signal powers. However, the PAs exhibit different nonlinear characteristics and different memory effects at different power levels. In order to solve this problem, a DPD model based on the blind K-Nearest Neighbor (KNN) algorithm with dimension weighting is proposed. The input signal sequence is classified by the proposed model according to the magnitudes of amplifier's current input signal and the memory input signal with the dimension-weighted KNN classification .And sub-models are established for each type of input signal sequence. The proposed method is verified experimentally by a Doherty PA, a three carrier Long Term Evolution (LTE) signal with a bandwidth of 30 MHz and a frequency point of 2.2 GHz is used as the input, the feedback channel is sampled using a sampling rate of 122.88 MHz. When the dimensional-weighted blind KNN classification method is combined with the Memory Polynomial (MP) model, the forward modeling performance and digital pre-distortion performance for the PA which exceed the performance of Generalized Memory Polynomial (GMP) model and MP model are manifested in the experiment. The excellent performance of the proposed model is verified in the experiment.
  • loading
  • [1]
    SHAFI M, MOLISCH A F, SMITH P J, et al. 5G: A tutorial overview of standards, trials, challenges, deployment, and practice[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(6): 1201–1221. doi: 10.1109/JSAC.2017.2692307
    [2]
    PHAM Q A, MONTORO G, LÓPEZ-BUENO D, et al. Dynamic selection and estimation of the digital predistorter parameters for power amplifier linearization[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(10): 3996–4004. doi: 10.1109/TMTT.2019.2923186
    [3]
    GUAN Lei and ZHU Anding. Green communications: Digital predistortion for wideband RF power amplifiers[J]. IEEE Microwave Magazine, 2014, 15(7): 84–99. doi: 10.1109/MMM.2014.2356037
    [4]
    WANG Siqi, HUSSEIN M A, VENARD O, et al. Optimal sizing of two-stage cascaded sparse memory polynomial model for high power amplifiers linearization[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(9): 3958–3965. doi: 10.1109/TMTT.2018.2838126
    [5]
    LIU Youjiang, ZHOU Jie, CHEN Wenhua, et al. A robust augmented complexity-reduced generalized memory polynomial for wideband RF power amplifiers[J]. IEEE Transactions on Industrial Electronics, 2014, 61(5): 2389–2401. doi: 10.1109/TIE.2013.2270217
    [6]
    LI Zhao, YU Cuiping, and LIU Yuan’an. A modified dynamic deviation reduction based Volterra model for digital predistortion of RF power amplifiers[C]. The 2019 IEEE 6th International Symposium on Electromagnetic Compatibility (ISEMC), Nanjing, China, 2019: 1–3.
    [7]
    兰榕, 胡欣, 邹峰, 等. 基于循环平稳特性的欠采样宽带数字预失真研究[J]. 电子与信息学报, 2020, 42(5): 1274–1280. doi: 10.11999/JEIT190105

    LAN Rong, HU Xin, ZOU Feng, et al. Research of low sampling frequency broadband digital predistortion with cyclostationary characteristics[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1274–1280. doi: 10.11999/JEIT190105
    [8]
    蔡天赋, 李明玉, 靳一, 等. 基于Landweber迭代算法的欠采样恢复数字预失真技术[J]. 电子与信息学报, 2021, 43(11): 3166–3173. doi: 10.11999/JEIT201051

    CAI Tianfu, LI Mingyu, JIN Yi, et al. An under-sampling restoration digital predistortion technique based on Landweber iteration algorithm[J]. Journal of Electronics &Information Technology, 2021, 43(11): 3166–3173. doi: 10.11999/JEIT201051
    [9]
    ZHU Anding, DRAXLER P J, HSIA C, et al. Digital predistortion for envelope-tracking power amplifiers using decomposed piecewise Volterra series[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(10): 2237–2247. doi: 10.1109/TMTT.2008.2003529
    [10]
    GHARAIBEH K M. Behavioral modeling of nonlinear power amplifiers using threshold decomposition-based piece wise linear approximation[C]. 2008 IEEE Radio and Wireless Symposium, Orlando, USA, 2008: 755–758.
    [11]
    YOUNES M, KWAN A, AKBARPOUR M, et al. Two-dimensional piecewise behavioral model for highly nonlinear dual-band transmitters[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8666–8675. doi: 10.1109/TIE.2017.2703683
    [12]
    AFSARDOOST S, ERIKSSON T, and FAGER C. Digital predistortion using a vector-switched model[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(4): 1166–1174. doi: 10.1109/TMTT.2012.2184295
    [13]
    LI Yue, CAO Wenhui, and ZHU Anding. Instantaneous sample indexed magnitude-selective affine function-based behavioral model for digital predistortion of RF power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(11): 5000–5010. doi: 10.1109/TMTT.2018.2855134
    [14]
    LI Yue, WANG Xiaoyu, PANG Jingzhou, et al. Boosted model tree-based behavioral modeling for digital predistortion of RF power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(9): 3976–3988. doi: 10.1109/TMTT.2021.3081096
    [15]
    ZHANG Junfeng, GAO Mingyi, CHEN Wei, et al. Non-data-aided k-nearest neighbors technique for optical fiber nonlinearity mitigation[J]. Journal of Lightwave Technology, 2018, 36(17): 3564–3572. doi: 10.1109/JLT.2018.2837689
    [16]
    HUANG Xiaohui, YANG Xiaofei, ZHAO Junhui, et al. A new weighting k-means type clustering framework with an l2-norm regularization[J]. Knowledge-Based Systems, 2018, 151: 165–179. doi: 10.1016/J.KNOSYS.2018.03.028
    [17]
    DING Lei, MUJICA F, and YANG Zigang. Digital predistortion using direct learning with reduced bandwidth feedback[C]. 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, USA, 2013: 1–3.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (469) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return