Citation: | WANG Fei, WANG Xinyu, ZHOU Jingchun, LIU Miao. An Underwater Object Detection Method for Sonar Image Based on YOLOv3 Model[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3419-3426. doi: 10.11999/JEIT220260 |
[1] |
ZHOU Jingchun, YANG Tongyu, CHU Weishen, et al. Underwater image restoration via backscatter pixel prior and color compensation[J]. Engineering Applications of Artificial Intelligence, 2022, 111: 10478. doi: 10.1016/j.engappai.2022.104785
|
[2] |
ZHOU Jingchun, ZHANG Dehuan, and ZHANG Weishi. Underwater image enhancement method via multi-feature prior fusion[J]. Applied Intelligence, 2022, 111: 10489. doi: 10.1007/s10489-022-03275-z
|
[3] |
MAUSSANG F, CHANUSSOT J, HETET A, et al. Mean-standard deviation representation of sonar images for echo detection: Application to SAS images[J]. IEEE Journal of Oceanic Engineering, 2007, 32(4): 956–970. doi: 10.1109/JOE.2007.907936
|
[4] |
YAN Xiaowei, LI Jianlong, and HE Zhiguang. Measurement of the echo reduction for underwater acoustic passive materials by using the time reversal technique[J]. Chinese Journal of Acoustics, 2016, 35(3): 309–320. doi: 10.15949/j.cnki.0217-9776.2016.03.009
|
[5] |
MUKHERJEE K, GUPTA S, RAY A, et al. Symbolic analysis of sonar data for underwater target detection[J]. IEEE Journal of Oceanic Engineering, 2011, 36(2): 219–230. doi: 10.1109/JOE.2011.2122590
|
[6] |
BUHL M and KENNEL M B. Statistically relaxing to generating partitions for observed time-series data[J]. Physical Review E, 2005, 71(4 Pt 2): 046213.
|
[7] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
|
[8] |
GIRSHICK R. Fast R-CNN[C]. Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
|
[9] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
|
[10] |
HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988.
|
[11] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
|
[12] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
|
[13] |
REDMON J and FARHADI A. YOLO9000: Better, faster, stronger[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6517–6525.
|
[14] |
JEONG J, PARK H, and KWAK N. Enhancement of SSD by concatenating feature maps for object detection[C]. Proceedings of the British Machine Vision Conference, London, UK, 2017: 76.1–76.12.
|
[15] |
REDMON J and FARHADI A. YOLOv3: An incremental improvement[J]. arXiv: 1804.02767, 2018.
|
[16] |
LAW H and DENG Jia. CornerNet: Detecting objects as paired keypoints[C]. 15th European Conference on Computer Vision, Munich, Germany, 2018: 765–781.
|
[17] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
|
[18] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007.
|