Advanced Search
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
LU Yang, XIONG Ke, GAO Bo, FAN Dian, PAN Gaofeng, AI Bo. Energy-efficient Beamforming Design for Simultaneous Lightwave Information and Power Transfer in VLC systems[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2611-2618. doi: 10.11999/JEIT220191
Citation: LU Yang, XIONG Ke, GAO Bo, FAN Dian, PAN Gaofeng, AI Bo. Energy-efficient Beamforming Design for Simultaneous Lightwave Information and Power Transfer in VLC systems[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2611-2618. doi: 10.11999/JEIT220191

Energy-efficient Beamforming Design for Simultaneous Lightwave Information and Power Transfer in VLC systems

doi: 10.11999/JEIT220191
Funds:  The National Natural Science Foundation of China (62101025), Beijing Nova Program (Z211100002121139), China Postdoctoral Science Foundation (BX2021031)
  • Received Date: 2022-02-28
  • Rev Recd Date: 2022-06-12
  • Available Online: 2022-06-29
  • Publish Date: 2022-08-17
  • Internet of Things (IoT) is a key application of future 6G. However, it is challenging to provide high-quality wireless coverage for billions of IoT devices with limited Radio Frequency (RF) bandwidth. Visible Light Communication (VLC) utilizes abundant ultrahigh bandwidths as complement to RF communication. This paper investigates the Energy Efficiency (EE) of a Simultaneous Lightwave Information and Power Transfer (SLIPT) enabled multi-user VLC system. An EE maximization problem is formulated under constraints of Quality of Service (QoS) requirements of energy harvesting and information rate at users, avoiding clipping distortion by the nonlinearity of the LED and the power budget at VLC transmitter. To solve the considered problem, an iterative algorithm is proposed based on Dinkelbach and successive convex approximation methods to optimize the beamforming vectors and the direct current offset. The convergence of the proposed algorithm is theoretically proved. The impact of the constraint of avoiding clipping distortion by the nonlinearity of the LED on EE is discussed. Simulation results verify the analysis. Moreover, the impacts of QoS requirements of users, the power budget at VLC transmitter and the filed of view of LED on EE are illustrated and analyzed.
  • loading
  • [1]
    袁伟杰, 李双洋, 种若汐, 等. 面向6G物联网的分布式译码技术[J]. 电子与信息学报, 2021, 43(1): 21–27. doi: 10.11999/JEIT200343

    YUAN Weijie, LI Shuangyang, CHONG Ruoxi, et al. A distributed decoding algorithm for 6G Internet-of-Things networks[J]. Journal of Electronics &Information Technology, 2021, 43(1): 21–27. doi: 10.11999/JEIT200343
    [2]
    ZHANG Rui and HO C K. MIMO broadcasting for simultaneous wireless information and power transfer[J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 1989–2001. doi: 10.1109/TWC.2013.031813.120224
    [3]
    尤肖虎, 尹浩, 邬贺铨. 6G与广域物联网[J]. 物联网学报, 2020, 4(1): 3–11. doi: 10.11959/j.issn.2096-3750.2020.00158

    YOU Xiaohu, YIN Hao, and WU Hequan. On 6G and wide-area IoT[J]. Chinese Journal on Internet of Things, 2020, 4(1): 3–11. doi: 10.11959/j.issn.2096-3750.2020.00158
    [4]
    栾宁, 熊轲, 张煜, 等. 6G: 典型应用、关键技术与面临挑战[J]. 物联网学报, 2022, 6(1): 29–43. doi: 10.11959/j.issn.2096-3750.2022.00253

    LUAN Ning, XIONG Ke, ZHANG Yu, et al. 6G: Typical applications, key technologies and challenges[J]. Chinese Journal on Internet of Things, 2022, 6(1): 29–43. doi: 10.11959/j.issn.2096-3750.2022.00253
    [5]
    CHI Nan, ZHOU Yingjun, WEI Yiran, et al. Visible light communication in 6G: Advances, challenges, and prospects[J]. IEEE Vehicular Technology Magazine, 2020, 15(4): 93–102. doi: 10.1109/MVT.2020.3017153
    [6]
    WANG Jinyuan, FU Xiantao, LU Rongrong, et al. Tight capacity bounds for indoor visible light communications with signal-dependent noise[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1700–1713. doi: 10.1109/TWC.2020.3035615
    [7]
    PAN Gaofeng, YE Jie, ZHANG Chao, et al. Secure cooperative hybrid VLC-RF systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7097–7107. doi: 10.1109/TWC.2020.3007937
    [8]
    PAN Gaofeng, DIAMANTOULAKIS P D, MA Zheng, et al. Simultaneous lightwave information and power transfer: Policies, techniques, and future directions[J]. IEEE Access, 2019, 7: 28250–28257. doi: 10.1109/ACCESS.2019.2901855
    [9]
    NDJIONGUE A R, NGATCHED T M N, DOBRE O A, et al. Toward the use of re-configurable intelligent surfaces in VLC systems: Beam steering[J]. IEEE Wireless Communications, 2021, 28(3): 156–162. doi: 10.1109/MWC.001.2000365
    [10]
    LU Yang, XIONG Ke, FAN Pingyi, et al. Global energy efficiency in secure MISO SWIPT systems with non-linear power-Splitting EH model[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(1): 216–232. doi: 10.1109/JSAC.2018.2872369
    [11]
    YANG Helin, ALPHONES A, ZHONG Wende, et al. Learning-based energy-efficient resource management by heterogeneous RF/VLC for ultra-reliable low-latency industrial IoT networks[J]. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5565–5576. doi: 10.1109/TII.2019.2933867
    [12]
    ABDELHADY A M, AMIN O, SHIHADA B, et al. Spectral efficiency and energy harvesting in multi-cell SLIPT systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3304–3318. doi: 10.1109/TWC.2020.2972314
    [13]
    XIAO Yue, DIAMANTOULAKIS P, FANG Zequn, et al. Cooperative hybrid VLC/RF systems with SLIPT[J]. IEEE Transactions on Communications, 2021, 69(4): 2532–2545. doi: 10.1109/TCOMM.2021.3051908
    [14]
    GUO Yangbo, XIONG Ke, LU Yang, et al. Achievable information rate in hybrid VLC-RF networks with lighting energy harvesting[J]. IEEE Transactions on Communications, 2021, 69(10): 6852–6864. doi: 10.1109/TCOMM.2021.3098030
    [15]
    AL HAMMADI A, SOFOTASIOS P C, MUHAIDAT S, et al. Non-orthogonal multiple access for hybrid VLC-RF networks with imperfect channel state information[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 398–411. doi: 10.1109/TVT.2020.3044837
    [16]
    LIU Xiaodong, WANG Yuhao, ZHOU Fuhui, et al. Beamforming design for secure MISO visible light communication networks with SLIPT[J]. IEEE Transactions on Communications, 2020, 68(12): 7795–7809. doi: 10.1109/TCOMM.2020.3019818
    [17]
    MA Shuai, ZHANG Fan, LI Hang, et al. Simultaneous lightwave information and power transfer in visible light communication systems[J]. IEEE Transactions on Wireless Communications, 2019, 18(12): 5818–5830. doi: 10.1109/TWC.2019.2939242
    [18]
    ARFAOUI M A, ZAID H, REZKI Z, et al. Artificial noise-based beamforming for the MISO VLC wiretap channel[J]. IEEE Transactions on Communications, 2019, 67(4): 2866–2879. doi: 10.1109/TCOMM.2018.2889649
    [19]
    HSIAO Y C, WU Y C, and LIN Che. Energy-efficient beamforming design for MU-MISO mixed RF/VLC heterogeneous wireless networks[J]. IEEE Transactions on Signal Processing, 2019, 67(14): 3770–3784. doi: 10.1109/TSP.2019.2920612
    [20]
    ZHANG Haijun, LIU Na, LONG Keping, et al. Energy efficient subchannel and power allocation for software-defined heterogeneous VLC and RF networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(3): 658–670. doi: 10.1109/JSAC.2018.2815478
    [21]
    DIAMANTOULAKIS P D, KARAGIANNIDIS G K, and DING Zhiguo. Simultaneous lightwave information and power transfer (SLIPT)[J]. IEEE Transactions on Green Communications and Networking, 2018, 2(3): 764–773. doi: 10.1109/TGCN.2018.2818325
    [22]
    WANG Kunyu, SO A M C, CHANG T H, et al. Outage constrained robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5690–5705. doi: 10.1109/TSP.2014.2354312
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (855) PDF downloads(169) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return