Advanced Search
Volume 45 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
ZHANG Gang, WANG Lei, JIANG Zhongjun. Expanded Capacity Orthogonal Noise Suppression Multi-level Differential Chaotic Shift Keying Communication System[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1032-1042. doi: 10.11999/JEIT220141
Citation: ZHANG Gang, WANG Lei, JIANG Zhongjun. Expanded Capacity Orthogonal Noise Suppression Multi-level Differential Chaotic Shift Keying Communication System[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1032-1042. doi: 10.11999/JEIT220141

Expanded Capacity Orthogonal Noise Suppression Multi-level Differential Chaotic Shift Keying Communication System

doi: 10.11999/JEIT220141
Funds:  The National Natural Science Foundation of China (61771085), Chongqing Natural Science Foundation of China (cstc2021jcyj-msxmX0836), Chongqing Education Commission Scientific Research Project (KJQN201900601)
  • Received Date: 2022-02-15
  • Accepted Date: 2022-06-08
  • Rev Recd Date: 2022-05-20
  • Available Online: 2022-06-13
  • Publish Date: 2023-03-10
  • To address the disadvantages of small transmission rate and poor Bit Error Rate (BER) of M-ary differential chaos shift keying. An expanded capacity orthogonal noise suppression multi-level Differential Chaotic Shift Keying (DCSK) communication system is proposed. An improved orthogonal chaotic signal generator is designed at the transmitter of the system. It can generate four sets of orthogonal chaos-based signals, which can greatly increase the communication capacity. An integrated utility function is defined and a particle swarm algorithm is introduced to optimize each parameter of the system. The theoretical BER equation is derived and the system simulation is analyzed under the Additive White Gaussian Noise (AWGN) channel and Rayleigh fading channel. The integrated utility functions of different systems are also compared. The results show that the system has a lower BER and better integrated utility compared, and has a better practical application.
  • loading
  • [1]
    陈志刚, 梁涤青, 邓小鸿, 等. Logistic混沌映射性能分析与改进[J]. 电子与信息学报, 2016, 38(6): 1547–1551. doi: 10.11999/JEIT151039

    CHEN Zhigang, LIANG Diqing, DENG Xiaohong, et al. Performance analysis and improvement of logistic chaotic mapping[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1547–1551. doi: 10.11999/JEIT151039
    [2]
    CHEN Zuwei, ZHANG Lin, WU Zhiqiang, et al. Reliable and efficient sparse code spreading aided MC-DCSK transceiver design for multiuser transmissions[J]. IEEE Transactions on Communications, 2021, 69(3): 1480–1495. doi: 10.1109/TCOMM.2020.3040422
    [3]
    XU Weikai, HUANG Tingting, and WANG Lin. Code-shifted differential chaos shift keying with code index modulation for high data rate transmission[J]. IEEE Transactions on Communications, 2017, 65(10): 4285–4294. doi: 10.1109/TCOMM.2017.2725261
    [4]
    CHENG Guixian, WANG Lin, XU Weikai, et al. Carrier index differential chaos shift keying modulation[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2017, 64(8): 907–911. doi: 10.1109/TCSII.2016.2613093
    [5]
    YE Lifen, CHEN Guanrong, and WANG Lin. Essence and advantages of FM-DCSK versus conventional spread-spectrum communication methods[J]. Circuits, Systems and Signal Processing, 2005, 24(5): 657–673. doi: 10.1007/s00034-005-2413-8
    [6]
    KADDOUM G. Wireless chaos-based communication systems: A comprehensive survey[J]. IEEE Access, 2016, 4: 2621–2648. doi: 10.1109/ACCESS.2016.2572730
    [7]
    HERCEG M, KADDOUM G, VRANJEŠ D, et al. Permutation index DCSK modulation technique for secure multiuser high-data-rate communication systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 2997–3011. doi: 10.1109/TVT.2017.2774108
    [8]
    蒋国平, 杨华, 段俊毅. 混沌数字调制技术研究进展[J]. 南京邮电大学学报:自然科学版, 2016, 36(1): 1–7. doi: 10.14132/j.cnki.1673-5439.2016.01.001

    JIANG Guoping, YANG Hua, and DUAN Junyi. Research progress on chaotic digital modulation technologies[J]. Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition, 2016, 36(1): 1–7. doi: 10.14132/j.cnki.1673-5439.2016.01.001
    [9]
    KOLUMBAN G, KENNEDY M P, JAKO Z, et al. Chaotic communications with correlator receivers: Theory and performance limits[J]. Proceedings of the IEEE, 2002, 90(5): 711–732. doi: 10.1109/JPROC.2002.1015003
    [10]
    Sushchik M, Tsimring L S, Volkovskii A R. Performance analysis of correlation-based communication schemes utilizing chaos[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(12): 1684–1691. doi: 10.1109/81.899920
    [11]
    KADDOUM G and GAGNON F. Performance analysis of STBC-CSK communication system over slow fading channel[J]. Signal Processing, 2013, 93(7): 2055–2060. doi: 10.1016/j.sigpro.2012.12.020
    [12]
    QUYEN N X, DUONG T Q, and NALLANATHAN A. Modelling, analysis and performance comparison of two direct sampling DCSK receivers under frequency non-selective fading channels[J]. IET Communications, 2016, 10(11): 1263–1272. doi: 10.1049/iet-com.2015.1103
    [13]
    HUANG Tingting, CHEN Wenyu, YANG Dongliang, et al. Design and performance analysis of multicarrier M-ary differential chaos shift keying system[C]. 2021 15th International Symposium on Medical Information and Communication Technology (ISMICT), Xiamen, China, 2021: 211–214.
    [14]
    夏磊, 杨华, 宋玉蓉. 多用户载波索引差分混沌移位键控通信系统及性能分析[J]. 计算机工程, 2021, 47(5): 181–188. doi: 10.19678/j.issn.1000-3428.0057946

    XIA Lei, YANG Hua, and SONG Yurong. Multi-user carrier index differential chaos shift keying communication system and performance analysis[J]. Computer Engineering, 2021, 47(5): 181–188. doi: 10.19678/j.issn.1000-3428.0057946
    [15]
    CAI Xiangming, XU Weikai, HONG Shaohua, et al. A trinal-code shifted differential chaos shift keying system[J]. IEEE Communications Letters, 2021, 25(3): 1000–1004. doi: 10.1109/LCOMM.2020.3041460
    [16]
    YANG Hua, TANG W K S, CHEN Guanrong, et al. System design and performance analysis of orthogonal multi-level differential chaos shift keying modulation scheme[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2016, 63(1): 146–156. doi: 10.1109/TCSI.2015.2510622
    [17]
    TIAN Dongping and SHI Zhongzhi. MPSO: Modified particle swarm optimization and its applications[J]. Swarm and Evolutionary Computation, 2018, 41: 49–68. doi: 10.1016/j.swevo.2018.01.011
    [18]
    张刚, 和华杰, 张鹏. 基于施密特正交化的降噪多载波相关延迟键控混沌通信系统[J]. 电子与信息学报, 2021, 43(7): 1930–1938. doi: 10.11999/JEIT200165

    ZHANG Gang, HE Huajie, and ZHANG Peng. NR-MC-CDSK chaotic communication system based on schmidt orthogonalization[J]. Journal of Electronics &Information Technology, 2021, 43(7): 1930–1938. doi: 10.11999/JEIT200165
    [19]
    贺利芳, 吴雪霜, 张天骐. 正交多用户短参考差分混沌移位键控通信系统性能分析[J]. 电子与信息学报, 2020, 42(10): 2445–2453. doi: 10.11999/JEIT190778

    HE Lifang, WU Xueshuang, and ZHANG Tianqi. Performance analysis of orthogonal multiuser short reference differential chaos shift keying communication system[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2445–2453. doi: 10.11999/JEIT190778
    [20]
    ZHANG Gang, DONG Jiangtao, and HE Lifang. A noise reduction orthogonal multi-user CDSK communication system based on frequency domain processing[J]. Annals of Telecommunications, 2022, 77(3): 237–250. doi: 10.1007/s12243-021-00873-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (402) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return