Advanced Search
Volume 45 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
WANG Heng, YU Lei, XIE Xin. Hybrid Data Scheduling Method for Industrial Wireless Sensor Networks Based on Age of Information[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1065-1073. doi: 10.11999/JEIT220088
Citation: WANG Heng, YU Lei, XIE Xin. Hybrid Data Scheduling Method for Industrial Wireless Sensor Networks Based on Age of Information[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1065-1073. doi: 10.11999/JEIT220088

Hybrid Data Scheduling Method for Industrial Wireless Sensor Networks Based on Age of Information

doi: 10.11999/JEIT220088
Funds:  The National Natural Science Foundation of China (61972061), The Natural Science Foundation of Chongqing, for Distinguished Young Scholars (cstc2019jcyjjqX0012), The Fundamental Research and Frontier Exploration of Chongqing (cstc2021ycjh-bgzxm0017)
  • Received Date: 2022-01-19
  • Rev Recd Date: 2022-04-21
  • Available Online: 2022-04-26
  • Publish Date: 2023-03-10
  • In Industrial Wireless Sensor Networks (IWSN), timely delivery of periodic control/sensing data flows and aperiodic event data flows is crucial to ensure production safety and efficiency. As a new metric of data freshness, Age of Information (AoI) can comprehensively measure the real-time performance of data delivery from the perspective of destination node. For industrial wireless sensor networks with hybrid periodic and aperiodic data, the data freshness metric of whole network is introduced. Considering that the freshness of periodic data exceeding the threshold may have a negative impact on industrial production, a joint optimization model is established, which minimizes the system average AoI and the probability of AoI overdue for periodic data, and then the optimization problem is formulated as a Markov Decision Process (MDP). Since the traditional optimal solution method based on relative value iteration is difficult to implement in large-scale networks result from dimensional disasters, Deep Reinforcement Learning (DRL) is used to reduce the state space dimension of the optimization problem. Moreover, the decision exploration mechanism is improved to speed up the learning speed, and a scheduling method of deep reinforcement learning based on Optimal Decision Exploration (DRL-ODE) is proposed. Simulation results show that the proposed method can improve the timeliness of network data delivery while reducing the probability of AoI overdue for periodic data effectively.
  • loading
  • [1]
    胡致远, 胡文前, 李香, 等. 面向业务可达性的广域工业互联网调度算法研究[J]. 电子与信息学报, 2021, 43(9): 2608–2616. doi: 10.11999/JEIT200583

    HU Zhiyuan, HU Wenqian, LI Xiang, et al. Research on wide area industrial internet scheduling algorithm based on service reachability[J]. Journal of Electronics &Information Technology, 2021, 43(9): 2608–2616. doi: 10.11999/JEIT200583
    [2]
    SHA M, GUNATILAKA D, WU Chengjie, et al. Empirical study and enhancements of industrial wireless sensor–actuator network protocols[J]. IEEE Internet of Things Journal, 2017, 4(3): 696–704. doi: 10.1109/JIOT.2017.2653362
    [3]
    王恒, 朱元杰, 杨杭, 等. 基于优先级分类的工业无线网络确定性调度算法[J]. 自动化学报, 2020, 46(2): 373–384. doi: 10.16383/j.aas.c170722

    WANG Heng, ZHU Yuanjie, YANG Hang, et al. Deterministic scheduling algorithm with priority classification for industrial wireless networks[J]. Acta Automatica Sinica, 2020, 46(2): 373–384. doi: 10.16383/j.aas.c170722
    [4]
    段洁, 胡显静, 林欢, 等. 面向物联网数据特征的信息中心网络缓存方案[J]. 电子与信息学报, 2021, 43(8): 2240–2248. doi: 10.11999/JEIT200631

    DUAN Jie, HU Xianjing, LIN Huan, et al. Information-centric networking caching scheme for data characteristics of internet of things[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2240–2248. doi: 10.11999/JEIT200631
    [5]
    KAUL S, YATES R, and GRUTESER M. Real-time status: How often should one update?[C]. 2012 Proceedings IEEE INFOCOM, Orlando, USA, 2012: 2731–2735.
    [6]
    KAM C, KOMPELLA S, NGUYEN G D, et al. Effect of message transmission path diversity on status age[J]. IEEE Transactions on Information Theory, 2016, 62(3): 1360–1374. doi: 10.1109/TIT.2015.2511791
    [7]
    KUANG Qiaobin, GONG Jie, CHEN Xiang, et al. Age-of-information for computation-intensive messages in mobile edge computing[C]. The 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi'an, China, 2019: 1–6.
    [8]
    KUANG Qiaobin, GONG Jie, CHEN Xiang, et al. Analysis on computation-intensive status update in mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4353–4366. doi: 10.1109/TVT.2020.2974816
    [9]
    KADOTA I, SINHA A, UYSAL-BIYIKOGLU E, et al. Scheduling policies for minimizing age of information in broadcast wireless networks[J]. IEEE/ACM Transactions on Networking, 2018, 26(6): 2637–2650. doi: 10.1109/TNET.2018.2873606
    [10]
    YIN Bo, ZHANG Shuai, and CHENG Yu. Application-oriented scheduling for optimizing the age of correlated information: A deep-reinforcement-learning-based approach[J]. IEEE Internet of Things Journal, 2020, 7(9): 8748–8759. doi: 10.1109/JIOT.2020.2996562
    [11]
    HSU Y P, MODIANO E, and DUAN Lingjie. Age of information: Design and analysis of optimal scheduling algorithms[C]. 2017 IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, 2017: 561–565.
    [12]
    TANG Haoyue, WANG Jintao, SONG Linqi, et al. Minimizing age of information with power constraints: Multi-user opportunistic scheduling in multi-state time-varying channels[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(5): 854–868. doi: 10.1109/JSAC.2020.2980911
    [13]
    王恒, 段思勰, 谢鑫. 基于信息年龄优化的多信道无线网络调度方法[J]. 电子与信息学报, 2022, 44(2): 702–709. doi: 10.11999/JEIT210107

    WANG Heng, DUAN Sixie, and XIE Xin. Scheduling method for multi-channel wireless networks based on optimization of age of information[J]. Journal of Electronics &Information Technology, 2022, 44(2): 702–709. doi: 10.11999/JEIT210107
    [14]
    BEDEWY A M, SUN Yin, and SHROFF N B. Optimizing data freshness, throughput, and delay in multi-server information-update systems[C]. 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 2016: 2569–2573.
    [15]
    赵悦超, 杨涛, 胡波. 无线传感器网络中基于信息年龄的状态更新策略[J]. 微电子学与计算机, 2020, 37(11): 29–34. doi: 10.19304/j.cnki.issn1000-7180.2020.11.006

    ZHAO Yuechao, YANG Tao, and HU Bo. A status updating policy based on age of information in wireless sensor network[J]. Microelectronics &Computer, 2020, 37(11): 29–34. doi: 10.19304/j.cnki.issn1000-7180.2020.11.006
    [16]
    XIE Xin, WANG Heng, and WENG Mingjiang. A reinforcement learning approach for optimizing the age-of-computing-enabled IoT[J]. IEEE Internet of Things Journal, 2022, 9(4): 2778–2786. doi: 10.1109/JIOT.2021.3093156
    [17]
    KASHEF M and MOAYERI N. Real-time scheduling for wireless networks with random deadlines[C]. The 13th International Workshop on Factory Communication Systems (WFCS), Trondheim, Norway, 2017: 1–9.
    [18]
    JIN Xi, KONG Fanxin, KONG Linghe, et al. A hierarchical data transmission framework for industrial wireless sensor and actuator networks[J]. IEEE Transactions on Industrial Informatics, 2017, 13(4): 2019–2029. doi: 10.1109/TII.2017.2685689
    [19]
    XIE Xin, WANG Heng, YU Lei, et al. Online algorithms for optimizing age of information in the IoT systems with multi-slot status delivery[J]. IEEE Wireless Communications Letters, 2021, 10(5): 971–975. doi: 10.1109/LWC.2021.3052569
    [20]
    LI Chengzhang, LI Shaoran, CHEN Yongce, et al. Minimizing age of information under general models for IoT data collection[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(4): 2256–2270. doi: 10.1109/TNSE.2019.2952764
    [21]
    KAM C, KOMPELLA S, NGUYEN G D, et al. On the age of information with packet deadlines[J]. IEEE Transactions on Information Theory, 2018, 64(9): 6419–6428. doi: 10.1109/TIT.2018.2818739
    [22]
    王恒, 陈鹏飞, 王平. 面向WIA-PA工业无线传感器网络的确定性调度算法[J]. 电子学报, 2018, 46(1): 68–74. doi: 10.3969/j.issn.0372-2112.2018.01.010

    WANG Heng, CHEN Pengfei, and WANG Ping. Deterministic scheduling algorithms for WIA-PA industrial wireless sensor networks[J]. Acta Electronica Sinica, 2018, 46(1): 68–74. doi: 10.3969/j.issn.0372-2112.2018.01.010
    [23]
    BERTSEKAS D P. Dynamic Programming and Optimal Control[M]. 4th ed. Belmont: Athena Scientific, 2012.
    [24]
    MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236
    [25]
    ABD-ELMAGID M A, DHILLON H S, and PAPPAS N. A reinforcement learning framework for optimizing age of information in RF-powered communication systems[J]. IEEE Transactions on Communications, 2020, 68(8): 4747–4760. doi: 10.1109/TCOMM.2020.2991992
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (752) PDF downloads(158) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return