Citation: | ZHOU Jin, LI Yuzhi, LI Bin. Image Processing-Driven Spectrum Sensing with Small Training Samples[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1102-1110. doi: 10.11999/JEIT220084 |
[1] |
陈勇, 张余, 柳永祥. 电磁频谱战发展剖析与思考[J]. 指挥与控制学报, 2018, 4(4): 319–324.
CHEN Yong, ZHANG Yu, and LIU Yongxiang. Analysis and thinking on the development of electromagnetic spectrum warfare[J]. Journal of Command and Control, 2018, 4(4): 319–324.
|
[2] |
XIONG Tianyi, YAO Yudong, REN Yujue, et al. Multiband spectrum sensing in cognitive radio networks with secondary user hardware limitation: Random and adaptive spectrum sensing strategies[J]. IEEE Transactions on Wireless Communications, 2018, 17(5): 3018–3029. doi: 10.1109/TWC.2018.2805729
|
[3] |
张莹, 滕伟, 韩维佳, 等. 认知无线电频谱感知技术综述[J]. 无线电通信技术, 2015, 41(3): 12–16. doi: 10.3969/j.issn.1673-1131.2015.07.056
ZHANG Ying, TENG Wei, HAN Weijia, et al. Review of spectrum sensing techniques in cognitive radio networks[J]. Radio Communications Technology, 2015, 41(3): 12–16. doi: 10.3969/j.issn.1673-1131.2015.07.056
|
[4] |
CHEN Hongsong, ZHANG Yongpeng, CAO Yongrui, et al. Security issues and defensive approaches in deep learning frameworks[J]. Tsinghua Science and Technology, 2021, 26(6): 894–905. doi: 10.26599/TST.2020.9010050
|
[5] |
TANG Hao, LIU Hong, XIAO Wei, et al. When dictionary learning meets deep learning: Deep dictionary learning and coding network for image recognition with limited data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(5): 2129–2141. doi: 10.1109/TNNLS.2020.2997289
|
[6] |
WANG Xi, TANG Fangyao, CHEN Hao, et al. UD-MIL: Uncertainty-driven deep multiple instance learning for OCT image classification[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(12): 3431–3442. doi: 10.1109/JBHI.2020.2983730
|
[7] |
盖建新, 薛宪峰, 吴静谊, 等. 基于深度卷积神经网络的协作频谱感知方法[J]. 电子与信息学报, 2021, 43(10): 2911–2919. doi: 10.11999/JEIT201005
GAI Jianxin, XUE Xianfeng, WU Jingyi, et al. Cooperative spectrum sensing method based on deep convolutional neural network[J]. Journal of Electronics &Information Technology, 2021, 43(10): 2911–2919. doi: 10.11999/JEIT201005
|
[8] |
岳文静, 刘文博, 陈志. 基于图像K-means聚类分析的频谱感知算法[J]. 信号处理, 2020, 36(2): 203–209. doi: 10.16798/j.issn.1003-0530.2020.02.006
YUE Wenjing, LIU Wenbo, and CHEN Zhi. Spectrum sensing algorithm based on image K-means clustering analysis[J]. Journal of Signal Processing, 2020, 36(2): 203–209. doi: 10.16798/j.issn.1003-0530.2020.02.006
|
[9] |
DAVASLIOGLU K and SAGDUYU Y E. Generative adversarial learning for spectrum sensing[C]. 2018 IEEE International Conference on Communications, Kansas City, USA, 2018: 1–6.
|
[10] |
LIU Zheng, JING Xiaojun, ZHANG Ronghui, et al. Spectrum sensing based on deep convolutional generative adversarial networks[C]. 2021 International Wireless Communications and Mobile Computing, Harbin, China, 2021: 796–801.
|
[11] |
MAO Xudong, LI Qing, XIE Haoran, et al. Least squares generative adversarial networks[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 2813–2821.
|
[12] |
麻文刚, 张亚东, 郭进. 基于LSTM与改进残差网络优化的异常流量检测方法[J]. 通信学报, 2021, 42(5): 23–40. doi: 10.11959/j.issn.1000-436x.2021109
MA Wengang, ZHANG Yadong, and GUO Jin. Abnormal traffic detection method based on LSTM and improved residual neural network optimization[J]. Journal on Communications, 2021, 42(5): 23–40. doi: 10.11959/j.issn.1000-436x.2021109
|
[13] |
蒲悦逸, 王文涵, 朱强, 等. 基于CNN-ResNet-LSTM模型的城市短时交通流量预测算法[J]. 北京邮电大学学报, 2020, 43(5): 9–14. doi: 10.13190/j.jbupt.2019-243
PU Yueyi, WANG Wenhan, ZHU Qiang, et al. Urban short-term traffic flow prediction algorithm based on CNN-ResNet-LSTM model[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(5): 9–14. doi: 10.13190/j.jbupt.2019-243
|