Advanced Search
Volume 44 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
YAN Lei, HE Tiankai, WANG Yiyin, ZHANG Rongxin, LI Xinbin. Hybrid Geographical Routing Protocol for Internet of Underwater Things[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1966-1973. doi: 10.11999/JEIT220048
Citation: YAN Lei, HE Tiankai, WANG Yiyin, ZHANG Rongxin, LI Xinbin. Hybrid Geographical Routing Protocol for Internet of Underwater Things[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1966-1973. doi: 10.11999/JEIT220048

Hybrid Geographical Routing Protocol for Internet of Underwater Things

doi: 10.11999/JEIT220048
Funds:  The National Natural Science Foundation of China (41976182, 61773264, 61873224, 62131020)
  • Received Date: 2022-01-12
  • Accepted Date: 2022-05-23
  • Rev Recd Date: 2022-05-23
  • Available Online: 2022-05-26
  • Publish Date: 2022-06-21
  • The goal of this paper is to design a routing protocol for IoUT data delivery. It is well known that underwater communication is limited by its channel’s hazardous nature, thus efficient routing protocols are needed to compensate for the challenging environments. Geometric STAteless Routing (G-STAR) is a type of geographical routing protocol that forwards messages in a greedy way and obtains sub-optimal results in most 3-dimensional Internet of Things scenarios. Yet the numerous degrading factors in underwater channels limit severely the performance of the G-STAR protocol. In this paper, a Hybrid G-STAR (H-G-STAR) routing protocol continuing the advantage of G-STAR and specifically adapted for underwater conditions is proposed. By introducing a noncooperative routing tactic based on channel listening, the protocol spontaneously searches for the route with the best channel condition whenever the network condition permits and thus avoiding inferior channels greedy routing might encounter. The simulation results show that the proposed protocol improves the routing performance of the network, obtains a lower Bit Error Rate (BER) in the physical layer than G-STAR and is better adapted for underwater network topologies.
  • loading
  • [1]
    徐文, 鄢社锋, 季飞, 等. 海洋信息获取、传输、处理及融合前沿研究评述[J]. 中国科学:信息科学, 2016, 46(8): 1053–1085. doi: 10.1360/N112016-00064

    XU Wen, YAN Shefeng, JI Fei, et al. Marine information gathering, transmission, processing, and fusion: Current status and future trends[J]. SCIENTIA SINICA Informationis, 2016, 46(8): 1053–1085. doi: 10.1360/N112016-00064
    [2]
    瞿逢重, 来杭亮, 刘建章, 等. 海洋物联网关键技术研究与应用[J]. 电信科学, 2021, 37(7): 25–33. doi: 10.11959/j.issn.1000-0801.2021149

    QU Fengzhong, LAI Hangliang, LIU Jianzhang, et al. Research and application on key techniques of marine IoT[J]. Telecommunications Science, 2021, 37(7): 25–33. doi: 10.11959/j.issn.1000-0801.2021149
    [3]
    SU Yuhan, LIWANG Minghui, GAO Zhibin, et al. Optimal cooperative relaying and power control for IoUT networks with reinforcement learning[J]. IEEE Internet of Things Journal, 2021, 8(2): 791–801. doi: 10.1109/JIOT.2020.3008178
    [4]
    ZHANG Tongwei, YAN Lei, HAN Guangjie, et al. Fast and accurate underwater acoustic horizontal ranging algorithm for an arbitrary sound-speed profile in the deep sea[J]. IEEE Internet of Things Journal, 2021, 9(1): 755–769. doi: 10.1109/JIOT.2021.3085331
    [5]
    AKYILDIZ I F, POMPILI D, and MELODIA T. Underwater acoustic sensor networks: Research challenges[J]. Ad Hoc Networks, 2005, 3(3): 257–279. doi: 10.1016/j.adhoc.2005.01.004
    [6]
    CELIK A, SAEED N, SHIHADA B, et al. Opportunistic routing for opto-acoustic internet of underwater things[J]. IEEE Internet of Things Journal, 2022, 9(3): 2165–2179. doi: 10.1109/JIOT.2021.3090301
    [7]
    GUAN Quansheng, JI Fei, LIU Yun, et al. Distance-vector-based opportunistic routing for underwater acoustic sensor networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 3831–3839. doi: 10.1109/JIOT.2019.2891910
    [8]
    CHEN Yougan, WANG Zhaohui, WAN Lei, et al. OFDM-modulated dynamic coded cooperation in underwater acoustic channels[J]. IEEE Journal of Oceanic Engineering, 2015, 40(1): 159–168. doi: 10.1109/JOE.2014.2304254
    [9]
    CELIK A, SAEED N, SHIHADA B, et al. A software-defined opto-acoustic network architecture for internet of underwater things[J]. IEEE Communications Magazine, 2020, 58(4): 88–94. doi: 10.1109/MCOM.001.1900593
    [10]
    WEI Xiaohui, GUO Hao, WANG Xingwang, et al. Reliable data collection techniques in underwater wireless sensor networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 404–431. doi: 10.1109/COMST.2021.3134955
    [11]
    LIOU E C, KAO C C, CHANG C H, et al. Internet of underwater things: Challenges and routing protocols[C]. 2018 IEEE International Conference on Applied System Invention, Chiba, Japan, 2018: 1171–1174.
    [12]
    KARP B and KUNG H T. GPSR: Greedy perimeter stateless routing for wireless networks[C]. The 6th Annual International Conference on Mobile Computing and Networking, Boston, USA, 2000: 243–254.
    [13]
    KUHN F, WATTENHOFER R, ZHANG Yan, et al. Geometric ad-hoc routing: Of theory and practice[C]. The Twenty-Second Annual Symposium on Principles of Distributed Computing, Boston, USA, 2003: 63–72.
    [14]
    SUN Minte, SAKAI K, HAMILTON B R, et al. G-STAR: Geometric STAteless routing for 3-D wireless sensor networks[J]. Ad Hoc Networks, 2011, 9(3): 341–354. doi: 10.1016/j.adhoc.2010.07.013
    [15]
    孙大军, 郑翠娥, 崔宏宇, 等. 水下传感器网络定位技术发展现状及若干前沿问题[J]. 中国科学:信息科学, 2018, 48(9): 1121–1136. doi: 10.1360/N112017-00262

    SUN Dajun, ZHENG Cuie, CUI Hongyu, et al. Developing status and some cutting-edge issues of underwater sensor network localization technology[J]. SCIENTIA SINICA Informationis, 2018, 48(9): 1121–1136. doi: 10.1360/N112017-00262
    [16]
    YAN Hai, SHI Z J, and CUI Junhong. DBR: Depth-based routing for underwater sensor networks[C]. The 7th International IFIP-TC6 Networking Conference on AdHoc and Sensor Networks, Wireless Networks, Next Generation Internet, Singapore, 2008: 72–86.
    [17]
    NOH Y, LEE U, LEE S, et al. HydroCast: Pressure routing for underwater sensor networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(1): 333–347. doi: 10.1109/TVT.2015.2395434
    [18]
    NOH Y, LEE U, WANG P, et al. VAPR: Void-aware pressure routing for underwater sensor networks[J]. IEEE Transactions on Mobile Computing, 2013, 12(5): 895–908. doi: 10.1109/TMC.2012.53
    [19]
    RAMEZANI H and LEUS G. Ranging in an underwater medium with multiple isogradient sound speed profile layers[J]. Sensors, 2012, 12(3): 2996–3017. doi: 10.3390/s120302996
    [20]
    PREISIG J. Acoustic propagation considerations for underwater acoustic communications network development[C]. The 1st ACM International Workshop on Underwater Networks, Los Angeles, USA, 2006: 1–5.
    [21]
    NGUYEN S T, CAYIRCI E, YAN Liang, et al. A shadow zone aware routing protocol for tactical acoustic undersea surveillance networks[C]. 2009 IEEE Military Communications Conference, Boston, USA, 2009: 1–7.
    [22]
    QU F. Underwater acoustic communication and IoUT[R]. 2021.
    [23]
    MATHUR S, SAGARI S S, AMIN S O, et al. Demo abstract: CDMA-based IoT services with shared band operation of LTE in 5G[C]. 2017 IEEE Conference on Computer Communications Workshops, Atlanta, USA, 2017: 958–959.
    [24]
    ZHANG Tongwei, HAN Guangjie, LIN Chuan, et al. Integration of communication, positioning, navigation and timing for deep-sea vehicles[J]. IEEE Network, 2020, 34(2): 121–127. doi: 10.1109/MNET.001.1900294
    [25]
    ZHANG Tongwei, YAN Lei, HAN Guangjie, et al. Low-cost, long-endurance cooperative navigation based on “light” marine equipment in deep sea[J]. IEEE Network, 2021, 35(2): 222–228. doi: 10.1109/MNET.011.2000443
    [26]
    ZHANG Tongwei, HAN Guangjie, YAN Lei, et al. Fast calculation of underwater acoustic horizontal range: A guarantee for B5G ocean mobile networks[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(4): 2922–2933. doi: 10.1109/TNSE.2020.3025571
    [27]
    HAMILTON B R and MA X. Noncooperative routing with cooperative diversity[C]. 2007 IEEE International Conference on Communications, Glasgow, UK, 2007: 4237–4242.
    [28]
    MA Xiaoli, SUN Minte, ZHAO Gang, et al. An efficient path pruning algorithm for geographical routing in wireless networks[J]. IEEE Transactions on Vehicular Technology, 2008, 57(4): 2474–2488. doi: 10.1109/TVT.2007.912332
    [29]
    陈友淦, 许肖梅. 人工智能技术在水声通信中的研究进展[J]. 哈尔滨工程大学学报, 2020, 41(10): 1536–1544. doi: 10.11990/jheu.202007110

    CHEN Yougan and XU Xiaomei. Research progress in artificial intelligence technology for underwater acoustic communications[J]. Journal of Harbin Engineering University, 2020, 41(10): 1536–1544. doi: 10.11990/jheu.202007110
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (672) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return