Advanced Search
Volume 45 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
LI Shuaiyong, XIE Xianle, MAO Wenping, YANG Xuemei, NIE Jiawei. Simultaneous Localization And Mapping Based on Variational Bayses Double-Scale Adaptive time-varying noise Cubature Kalman Filter[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1006-1014. doi: 10.11999/JEIT220031
Citation: LI Shuaiyong, XIE Xianle, MAO Wenping, YANG Xuemei, NIE Jiawei. Simultaneous Localization And Mapping Based on Variational Bayses Double-Scale Adaptive time-varying noise Cubature Kalman Filter[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1006-1014. doi: 10.11999/JEIT220031

Simultaneous Localization And Mapping Based on Variational Bayses Double-Scale Adaptive time-varying noise Cubature Kalman Filter

doi: 10.11999/JEIT220031
Funds:  The National Natural Science Foundation of China (61703066), Chongqing Basic Research and Frontier Exploration Project (cstc2018jcyjAX0536), Chongqing Technology Innovation and Application Development Special Project (cstc2018jszx-cyztzxX0028, cstc2019jscx-fxydX0042, cstc2019jscx-zdztzxX0053)
  • Received Date: 2022-01-10
  • Rev Recd Date: 2022-06-22
  • Available Online: 2022-06-29
  • Publish Date: 2023-03-10
  • In order to solve the problem that the state estimation accuracy of mobile robot in Simultaneous Localization And Mapping (SLAM) is reduced due to the time-varying system noise and observed noise, a SLAM algorithm is proposed based on variational Bayes Double-Scale Adaptive time-varying noise Cubature Kalman Filter (DSACKF SLAM). The inverse Wishart distribution is used to model the one-step predicted error covariance matrix $ {{\boldsymbol{P}}_{k|k - 1}} $ and the observed noise covariance matrix ${{\boldsymbol{R}}_k}$ to reduce the influence of system noise and observed noise respectively, and the variational Bayes filter is used to estimate the mobile robot state matrix ${{\boldsymbol{X}}_k}$, $ {{\boldsymbol{P}}_{k|k - 1}} $ and ${{\boldsymbol{R}}_k}$. Simulation experiments are carried out under the time-varying and time-invariant conditions of system noise and observed noise respectively. The results show that, compared with the SLAM algorithm based on Unscented Kalman Filter (UKF SLAM) and the SLAM algorithm based on Variational Bayes Adaptive observed noise Cubature Kalman Filter (VB-ACKF SLAM), when the noise is time-varying, the average position error decreases by 1.54 m and 3.47 m respectively. When the noise is time-invariant, the average position error decreases by 0.62 m and 1.41 m respectively. The proposed DSACKF SLAM algorithm has better estimation performance.
  • loading
  • [1]
    DURRANT-WHYTE H and BAILEY T. Simultaneous localization and mapping: Part I[J]. IEEE Robotics & Automation Magazine, 2006, 13(2): 99–110. doi: 10.1109/MRA.2006.1638022
    [2]
    CHEN Chaoyang, HE Qi, YE Qiubo, et al. Simultaneous localization and mapping method based on improved cubature Kalman filter[J]. Sensors and Materials, 2021, 33(8): 2591–2606. doi: 10.18494/SAM.2021.3387
    [3]
    ECKENHOFF K, GENEVA P, and HUANG Guoquan. MIMC-VINS: A versatile and resilient multi-IMU multi-camera visual-inertial navigation system[J]. IEEE Transactions on Robotics, 2021, 37(5): 1360–1380. doi: 10.1109/TRO.2021.3049445
    [4]
    陈孟元, 徐明辉. 基于自组织可增长映射的移动机器人仿生定位算法研究[J]. 电子与信息学报, 2021, 43(4): 1003–1013. doi: 10.11999/JEIT200025

    CHEN Mengyuan and XU Minghui. Research on mobile robot bionic location algorithm based on growing self-organizing map[J]. Journal of Electronics &Information Technology, 2021, 43(4): 1003–1013. doi: 10.11999/JEIT200025
    [5]
    GONG Zheng, LI J, LUO Zhipeng, et al. Mapping and semantic modeling of underground parking lots using a backpack LiDAR system[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 734–746. doi: 10.1109/TITS.2019.2955734
    [6]
    胡钊政, 刘佳蕙, 黄刚, 等. 融合WiFi、激光雷达与地图的机器人室内定位[J]. 电子与信息学报, 2021, 43(8): 2308–2316. doi: 10.11999/JEIT200671

    HU Zhaozheng, LIU Jiahui, HUANG Gang, et al. Integration of WiFi, laser, and map for robot indoor localization[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2308–2316. doi: 10.11999/JEIT200671
    [7]
    KIA S S, ROUNDS S, and MARTINEZ S. Cooperative localization for mobile agents: A recursive decentralized algorithm based on Kalman-filter decoupling[J]. IEEE Control Systems Magazine, 2016, 36(2): 86–101. doi: 10.1109/MCS.2015.2512033
    [8]
    BLOESCH M, BURRI M, OMARI S, et al. Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback[J]. The International Journal of Robotics Research, 2017, 36(10): 1053–1072. doi: 10.1177/0278364917728574
    [9]
    LUO Jingwen and QIN Shiyin. A fast algorithm of SLAM based on combinatorial interval filters[J]. IEEE Access, 2018, 6: 28174–28192. doi: 10.1109/ACCESS.2018.2838112
    [10]
    QIN Tong, LI Peiliang, and SHEN Shaojie. VINS-Mono: A robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004–1020. doi: 10.1109/TRO.2018.2853729
    [11]
    CAO Yanjun and BELTRAME G. VIR-SLAM: Visual, inertial, and ranging SLAM for single and multi-robot systems[J]. Autonomous Robots, 2021, 45(6): 905–917. doi: 10.1007/s10514-021-09992-7
    [12]
    CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al. ORB-SLAM3: An accurate open-source library for visual, visual–inertial, and multimap SLAM[J]. IEEE Transactions on Robotics, 2021, 37(6): 1874–1890. doi: 10.1109/TRO.2021.3075644
    [13]
    董星亮, 苑晶, 张雪波, 等. 室内环境下基于图像序列拓扑关系的移动机器人全局定位[J]. 机器人, 2019, 41(1): 83–89,103. doi: 10.13973/j.cnki.robot.180100

    DONG Xingliang, YUAN Jing, ZHANG Xuebo, et al. Mobile robot global localization based on topological relationship between image sequences in indoor environments[J]. Robot, 2019, 41(1): 83–89,103. doi: 10.13973/j.cnki.robot.180100
    [14]
    WILLIAMS B, CUMMINS M, NEIRA J, et al. A comparison of loop closing techniques in monocular SLAM[J]. Robotics and Autonomous Systems, 2009, 57(12): 1188–1197. doi: 10.1016/j.robot.2009.06.010
    [15]
    CHOI K S and LEE S G. An enhanced CSLAM for multi-robot based on unscented Kalman filter[J]. International Journal of Control, Automation and Systems, 2012, 10(1): 102–108. doi: 10.1007/s12555-012-0111-4
    [16]
    CHANDRA K P B, GU DAWEI, and POSTLETHWAITE I. Cubature Kalman filter based localization and mapping[J]. IFAC Proceedings Volumes, 2011, 44(1): 2121–2125. doi: 10.3182/20110828-6-IT-1002.03104
    [17]
    JWO D J, YANG Chifan, CHUANG C H, et al. Performance enhancement for ultra-tight GPS/INS integration using a fuzzy adaptive strong tracking unscented Kalman filter[J]. Nonlinear Dynamics, 2013, 73(1/2): 377–395. doi: 10.1007/s11071-013-0793-z
    [18]
    张文玲, 朱明清, 陈宗海. 基于强跟踪UKF的自适应SLAM算法[J]. 机器人, 2010, 32(2): 190–195. doi: 10.13973/j.cnki.robot.2010.02.013

    ZHANG Wenling, ZHU Mingqing, and CHEN Zonghai. An adaptive SLAM algorithm based on strong tracking UKF[J]. Robot, 2010, 32(2): 190–195. doi: 10.13973/j.cnki.robot.2010.02.013
    [19]
    张抒扬, 董鹏, 敬忠良. 变分贝叶斯自适应容积卡尔曼的SLAM算法[J]. 哈尔滨工业大学学报, 2019, 51(4): 12–18. doi: 10.11918/j.issn.0367-6234.201801013

    ZHANG Shuyang, DONG Peng, and JING Zhongliang. Adaptive cubature Kalman filtering SLAM algorithm based on variational Bayes[J]. Journal of Harbin Institute of Technology, 2019, 51(4): 12–18. doi: 10.11918/j.issn.0367-6234.201801013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (569) PDF downloads(128) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return