Advanced Search
Volume 44 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
DING Feilong, CHI Cheng, LI Yu, HUANG Haining. Multiple-snapshot Compressive Beamforming with Non-convex Sparse Constraints[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2071-2079. doi: 10.11999/JEIT220017
Citation: DING Feilong, CHI Cheng, LI Yu, HUANG Haining. Multiple-snapshot Compressive Beamforming with Non-convex Sparse Constraints[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2071-2079. doi: 10.11999/JEIT220017

Multiple-snapshot Compressive Beamforming with Non-convex Sparse Constraints

doi: 10.11999/JEIT220017
Funds:  The National Natural Science Foundation of China (62001469)
  • Received Date: 2022-01-06
  • Rev Recd Date: 2022-05-24
  • Available Online: 2022-05-26
  • Publish Date: 2022-06-21
  • Compressive beamforming based on the minimax-concave penalty function constraint, compared with the traditional $ {l_1} $ norm compressive beamforming, can enhance the sparsity of the signal and obtain a more accurate Direction Of Arrival (DOA) estimation. However, under the background of strong noise, the azimuth estimation result of this algorithm is unstable. In response to this problem, a Multiple-Snapshot Compressed sensing BeamForming based on the constraint of the Minimax Concave Penalty (MCP-MCSBF) function is proposed. Through the joint processing of multiple snapshots, it provides better anti-noise performance and more accurate direction of arrival estimation results. The simulation results show that compared with other multi-snapshot direction of arrival estimation algorithms, the proposed algorithm provides better accuracy and higher angular resolution. The lake test results verify further the effectiveness of the proposed algorithm.
  • loading
  • [1]
    MALIOUTOV D, CETIN M, and WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010–3022. doi: 10.1109/TSP.2005.850882
    [2]
    WANG Shuo, CHI Cheng, JIN Shenglong, et al. Fast compressive beamforming with a modified fast iterative shrinkage-thresholding algorithm[J]. The Journal of the Acoustical Society of America, 2021, 149(5): 3437–3448. doi: 10.1121/10.0004997
    [3]
    XENAKI A, GERSTOFT P, and MOSEGAARD K. Compressive beamforming[J]. The Journal of the Acoustical Society of America, 2014, 136(1): 260–271. doi: 10.1121/1.4883360
    [4]
    BARANIUK R G, CANDES E, ELAD M, et al. Applications of sparse representation and compressive sensing [scanning the issue][J]. Proceedings of the IEEE, 2010, 98(6): 906–909. doi: 10.1109/JPROC.2010.2047424
    [5]
    SELESNICK I W and BAYRAM İ. Sparse signal estimation by maximally sparse convex optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(5): 1078–1092. doi: 10.1109/TSP.2014.2298839
    [6]
    QIAO Baijie, AO Chunyan, MAO Zhu, et al. Non-convex sparse regularization for impact force identification[J]. Journal of Sound and Vibration, 2020, 477: 115311. doi: 10.1016/j.jsv.2020.115311
    [7]
    LIU Lutao and RAO Zejing. An adaptive Lp norm minimization algorithm for direction of arrival estimation[J]. Remote Sensing, 2022, 14(3): 766. doi: 10.3390/rs14030766
    [8]
    TAUSIESAKUL B. Iteratively reweighted least squares minimization with nonzero index update[C]. 2021 Smart Technologies, Communication and Robotics (STCR), Sathyamangalam, India, 2021: 1–6.
    [9]
    SELESNICK I. Sparse regularization via convex analysis[J]. IEEE Transactions on Signal Processing, 2017, 65(17): 4481–4494. doi: 10.1109/TSP.2017.2711501
    [10]
    YANG Yixin, DU Zhaohui, WANG Yong, et al. Convex compressive beamforming with nonconvex sparse regularization[J]. The Journal of the Acoustical Society of America, 2021, 149(2): 1125–1137. doi: 10.1121/10.0003373
    [11]
    SHAW A, SMITH J, and HASSANIEN A. MVDR beamformer design by imposing unit circle roots constraints for uniform linear arrays[J]. IEEE Transactions on Signal Processing, 2021, 69: 6116–6130. doi: 10.1109/TSP.2021.3121630
    [12]
    DIAS U V. Extremely sparse co-prime acquisition: Low latency estimation using MUSIC algorithm[C]. 2021 Sixth International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 2021: 225–229.
    [13]
    GERSTOFT P, XENAKI A, and MECKLENBRÄUKER C F. Multiple and single snapshot compressive beamforming[J]. The Journal of the Acoustical Society of America, 2015, 138(4): 2003–2014. doi: 10.1121/1.4929941
    [14]
    BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004: 23–25.
    [15]
    BECK A and TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183–202. doi: 10.1137/080716542
    [16]
    GRANT M C and BOYD S P. Graph Implementations for Nonsmooth Convex Programs[M]. BLONDEL V D, BOYD S P, and KIMURA H. Recent Advances in Learning and Control. London: Springer, 2008: 95–110.
    [17]
    HUBER P J. Robust estimation of a location parameter[J]. The Annals of Mathematical Statistics, 1964, 35(1): 73–101. doi: 10.1214/aoms/1177703732
    [18]
    XU Yangyang and YIN Wotao. Block stochastic gradient iteration for convex and nonconvex optimization[J]. SIAM Journal on Optimization, 2015, 25(3): 1686–1716. doi: 10.1137/140983938
    [19]
    COMBETTES P L and PESQUET J C. Proximal Splitting Methods in Signal Processing[M]. BAUSCHKE H H, BURACHIK R S, COMBETTES P L, et al. Fixed-Point Algorithms for Inverse Problems in Science and Engineering. New York: Springer, 2011: 185–212.
    [20]
    TANG Wengen, JIANG Hong, and ZHANG Qi. One-bit gridless DOA estimation with multiple measurements exploiting accelerated proximal gradient algorithm[J]. Circuits, Systems, and Signal Processing, 2022, 41(2): 1100–1114. doi: 10.1007/s00034–021-01829-z
    [21]
    LI Ping, WANG Hua, LI Xuemei, et al. An image denoising algorithm based on adaptive clustering and singular value decomposition[J]. IET Image Processing, 2021, 15(3): 598–614. doi: 10.1049/ipr2.12017
    [22]
    BAUSCHKE H H and COMBETTES P L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces[M]. Cham: Springer International Publishing, 2017: 413–447.
    [23]
    LU Hongtao, LONG Xianzhong, and LV Jingyuan. A fast algorithm for recovery of jointly sparse vectors based on the alternating direction methods[J]. Journal of Machine Learning Research, 2011, 15(6): 461–469.
    [24]
    POCK T and SABACH S. Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems[J]. SIAM Journal on Imaging Sciences, 2016, 9(4): 1756–1787. doi: 10.1137/16M1064064
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (527) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return