Advanced Search
Volume 45 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
ZHANG Hui, ZENG Xianpu, GAO Liang. Track Segment Association of Automatic Identification System and Dual-frequency High-Frequency Surface Wave Radar Based on Improved Gale-Shapley Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1015-1022. doi: 10.11999/JEIT220005
Citation: ZHANG Hui, ZENG Xianpu, GAO Liang. Track Segment Association of Automatic Identification System and Dual-frequency High-Frequency Surface Wave Radar Based on Improved Gale-Shapley Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1015-1022. doi: 10.11999/JEIT220005

Track Segment Association of Automatic Identification System and Dual-frequency High-Frequency Surface Wave Radar Based on Improved Gale-Shapley Algorithm

doi: 10.11999/JEIT220005
Funds:  The National Key Research and Development Program of China (2017YFC1405200), The National Natural Science Foundation of China (61701263)
  • Received Date: 2022-01-05
  • Rev Recd Date: 2022-08-31
  • Available Online: 2022-09-02
  • Publish Date: 2023-03-10
  • Large-range maritime vessel targets can be detected continuously by High-Frequency Surface Wave Radar (HFSWR), but the tracking trajectory of the target is easily broken in the presence of disturbing factors such as sea clutter. In current studies on HFSWR track association, the case of broken tracks is usually ignored and the track association is considered as a bipartite graph matching problem, which can lead to the possibility of judging broken tracks of a single target as multiple targets, and thus wrong target association results are obtained. For the above situation, fuzzy integrated evaluation and iterative search algorithms are considered in this paper. The Gale-Shapley (GS) algorithm is introduced into the field of track association for the first time, and it is improved to satisfy the many-to-many track association case when the track is broken , the Improved Gale-Shapley (IGS) algorithm is proposed. In this algorithm, the tendency sequences between the tracks can be obtained by calculating the fuzzy composite judgment values between the tracks. Then, the tracks are clustered by an iterative search method to obtain the track clusters. Finally, the track clusters and the propensity sequences are fed into the Gale-Shapley algorithm to perform several rounds of games to give the association results. The measured data and simulation data of dual-frequency HFSWR and Automatic Identification System (AIS) are used for experimental tests. Experimental tests are conducted using simulated and measured data from dual-frequency HFSWR and AIS. The experimental results show that the multi-sensor track association problem in the case of track break can be solved by the proposed algorithm, and the track association effect in dense areas is better than that of the conventional algorithm.
  • loading
  • [1]
    JI Yonggang, ZHANG Jie, MENG Junmin, et al. Point association analysis of vessel target detection with SAR, HFSWR and AIS[J]. Acta Oceanologica Sinica, 2014, 33(9): 73–81. doi: 10.1007/s13131-014-0498-2
    [2]
    刘根旺, 刘永信, 纪永刚, 等. 基于模糊双门限的高频地波雷达与AIS目标航迹关联方法[J]. 系统工程与电子技术, 2016, 38(3): 557–562. doi: 10.3969/j.issn.1001-506X.2016.03.13

    LIU Genwang, LIU Yongxin, JI Yonggang, et al. Track association for high-frequency surface wave radar and AIS based on fuzzy double threshold theory[J]. Systems Engineering and Electronics, 2016, 38(3): 557–562. doi: 10.3969/j.issn.1001-506X.2016.03.13
    [3]
    SUN Weifeng, HUANG Weimin, JI Yonggang, et al. A vessel azimuth and course joint re-estimation method for compact HFSWR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 1041–1051. doi: 10.1109/TGRS.2019.2943065
    [4]
    SUN Weifeng, DAI Yongshou, JI Yonggang, et al. Vessel target tracking exploiting frequency diversity for dual-frequency HFSWR[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–4.
    [5]
    NIKOLIC D, STOJKOVIC N, and LEKIC N. Maritime over the horizon sensor integration: High frequency surface-wave-radar and automatic identification system data integration algorithm[J]. Sensors, 2018, 18(4): 1147. doi: 10.3390/s18041147
    [6]
    STOJKOVIC N, NIKOLIC D, and PUZOVIĆ S. Density based clustering data association procedure for real–time HFSWRs tracking at OTH distances[J]. IEEE Access, 2020, 8: 39907–39919. doi: 10.1109/ACCESS.2020.2976481
    [7]
    WANG Jun, ZENG Yajun, WEI Shaoming, et al. Multi-sensor track-to-track association and spatial registration algorithm under incomplete measurements[J]. IEEE Transactions on Signal Processing, 2021, 69: 3337–3350. doi: 10.1109/TSP.2021.3084533
    [8]
    NAZARI M, PASHAZADEH S, and MOHAMMAD-KHANLI L. An adaptive density-based fuzzy clustering track association for distributed tracking system[J]. IEEE Access, 2019, 7: 135972–135981. doi: 10.1109/ACCESS.2019.2941184
    [9]
    靳冰洋, 刘峥, 秦基凯. 基于灰色关联度的两级实时航迹关联算法[J]. 兵工学报, 2020, 41(7): 1330–1338. doi: 10.3969/j.issn.1000-1093.2020.07.010

    JIN Bingyang, LIU Zheng, and QIN Jikai. Two-stage real-time track correlation algorithm based on gray correlation[J]. Acta Armamentarii, 2020, 41(7): 1330–1338. doi: 10.3969/j.issn.1000-1093.2020.07.010
    [10]
    蔡昌恺, 朱浩, 余仁伟, 等. 基于航迹全局和局部混合特征的航迹关联算法[J]. 仪器仪表学报, 2020, 41(10): 32–42. doi: 10.19650/j.cnki.cjsi.J2006793

    CAI Changkai, ZHU Hao, YU Renwei, et al. Track-to-track association by the global and local mixture feature[J]. Chinese Journal of Scientific Instrument, 2020, 41(10): 32–42. doi: 10.19650/j.cnki.cjsi.J2006793
    [11]
    RAGHU J, SRIHARI P, THARMARASA R, et al. Comprehensive track segment association for improved track continuity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2463–2480. doi: 10.1109/TAES.2018.2820364
    [12]
    周学平, 李佳杰, 赵晓莲, 等. 基于匈牙利法的机载雷达中断航迹关联[J]. 现代雷达, 2021, 43(6): 42–48. doi: 10.16592/j.cnki.1004-7859.2021.06.008

    ZHOU Xueping, LI Jiajie, ZHAO Xiaolian, et al. Airborne radar track segment association based on hungarian algorithm[J]. Modern Radar, 2021, 43(6): 42–48. doi: 10.16592/j.cnki.1004-7859.2021.06.008
    [13]
    CHANG W, JAU Y T, SU S L, et al. Gale-Shapley-algorithm based resource allocation scheme for device-to-device communications underlaying downlink cellular networks[C]. 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 2016: 1–6.
    [14]
    PITTEL B. One-sided version of Gale-Shapley proposal algorithm and its likely behavior under random preferences[J]. Discrete Applied Mathematics, 2021, 292: 1–18. doi: 10.1016/j.dam.2020.12.020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (494) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return