Advanced Search
Volume 45 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
ZHU Guangyu, ZHANG Meng, YI Yang. Prediction of Evolution Results of Urban Rail Transit Emergencies Based on Knowledge Graph[J]. Journal of Electronics & Information Technology, 2023, 45(3): 949-957. doi: 10.11999/JEIT211594
Citation: ZHU Guangyu, ZHANG Meng, YI Yang. Prediction of Evolution Results of Urban Rail Transit Emergencies Based on Knowledge Graph[J]. Journal of Electronics & Information Technology, 2023, 45(3): 949-957. doi: 10.11999/JEIT211594

Prediction of Evolution Results of Urban Rail Transit Emergencies Based on Knowledge Graph

doi: 10.11999/JEIT211594
Funds:  The National Natural Science Foundation of China (61872037, 62132003, 62272036), The Fundamental Research Funds for the Central Universities (2021YJS309)
  • Received Date: 2021-12-29
  • Rev Recd Date: 2022-04-11
  • Available Online: 2022-04-17
  • Publish Date: 2023-03-10
  • Accurately predicting the evolution process and results of emergencies is of great reference to formulate the emergency response plans of the urban rail transit system and safeguard its secure operation. However, the prediction methods of emergency evolution results are lack of high intelligence, and excessively depend on the feature weighting and retrieval template set subjectively by policymakers, which is complicated, inaccurate, and short of applicability. Based on Knowledge Graph(KG) and Relational-Graph Convolution Neural network(R-GCN), a predicting method of evolution result of urban rail transit emergencies is proposed. A knowledge graph of urban rail transit emergencies is constructed to combine with contextual information related to the emergency for structured processing. Firstly, the knowledge graph of urban rail transit emergencies is constructed to combine with contextual information related to the emergency for structured processing. Then the predicting model of urban rail transit emergencies is constructed based on the relational-graph convolution neural network to achieve the result prediction of urban rail transit emergency. Finally, the verification is conducted via case base of urban rail transit emergency. The experimental result demonstrates that the predicting method proposed in this paper is of high accuracy and applicability, which can provide consolidated data and decision support for rail transit emergency management.
  • loading
  • [1]
    封超, 杨乃定, 桂维民, 等. 基于案例推理的突发事件应急方案生成方法[J]. 控制与决策, 2016, 31(8): 1526–1530. doi: 10.13195/j.kzyjc.2015.0696

    FENG Chao, YANG Naiding, GUI Weimin, et al. Method for generating emergency alternative based on case-based reasoning[J]. Control and Decision, 2016, 31(8): 1526–1530. doi: 10.13195/j.kzyjc.2015.0696
    [2]
    张力菠, 韩玉启, 陈杰, 等. 供应链管理的系统动力学研究综述[J]. 系统工程, 2005, 23(6): 8–15. doi: 10.3969/j.issn.1001-4098.2005.06.002

    ZHANG Libo, HAN Yuqi, CHEN Jie, et al. A review: The application of system dynamics in supply chain management[J]. Systems Engineering, 2005, 23(6): 8–15. doi: 10.3969/j.issn.1001-4098.2005.06.002
    [3]
    马骁. 基于系统动力学的城市轨道交通车站客流仿真与控制研究[D]. [硕士论文], 北京交通大学, 2019.

    MA Xiao. Research on passenger flow simulation and control of urban rail transit station based on system dynamics[D]. [Master dissertation], Beijing Jiaotong University, 2019.
    [4]
    董士浩, 李稚. 基于系统动力学的国际供应链金融风险预测[J]. 财会月刊, 2019(12): 170–176. doi: 10.19641/j.cnki.42-1290/f.2019.12.022

    DONG Shihao and LI Zhi. Forecasting of financial risks in international supply chain by system dynamics method[J]. Finance and Accounting Monthly, 2019(12): 170–176. doi: 10.19641/j.cnki.42-1290/f.2019.12.022
    [5]
    王其藩. 系统动力学[M]. 北京: 清华大学出版社, 1994: 41–45.

    WANG Qifan. System Dynamics[M]. Beijing: Tsinghua University Press, 1994: 41–45.
    [6]
    李肖冰. 基于系统动力学的中国能源供求预测模型研究[D]. [硕士论文], 内蒙古科技大学, 2015.

    LI Xiaobing. The research of energy demand and supply forecast model of China based on system dynamics[D]. [Master dissertation], Inner Mongolia University of Science & Technology, 2015.
    [7]
    徐曼, 沈江, 余海燕. 数据驱动的医疗与健康决策支持研究综述[J]. 工业工程与管理, 2017, 22(1): 1–13. doi: 10.19495/j.cnki.1007-5429.2017.01.001

    XU Man, SHEN Jiang, and YU Haiyan. A review on data-driven healthcare decision-making support[J]. Industrial Engineering and Management, 2017, 22(1): 1–13. doi: 10.19495/j.cnki.1007-5429.2017.01.001
    [8]
    强韶华, 罗云鹿, 李玉鹏, 等. 基于RBR和CBR的金融事件本体推理研究[J]. 数据分析与知识发现, 2019, 3(8): 94–104. doi: 10.11925/infotech.2096-3467.2018.1137

    QIANG Shaohua, LUO Yunlu, LI Yupeng, et al. Ontology reasoning for financial affairs with RBR and CBR[J]. Data Analysis and Knowledge Discovery, 2019, 3(8): 94–104. doi: 10.11925/infotech.2096-3467.2018.1137
    [9]
    官赛萍, 靳小龙, 贾岩涛, 等. 面向知识图谱的知识推理研究进展[J]. 软件学报, 2018, 29(10): 2966–2994. doi: 10.13328/j.cnki.jos.005551

    GUAN Saiping, JIN Xiaolong, JIA Yantao, et al. Knowledge reasoning over knowledge graph: A survey[J]. Journal of Software, 2018, 29(10): 2966–2994. doi: 10.13328/j.cnki.jos.005551
    [10]
    王萌, 王靖婷, 江胤霖, 等. 人机混合的知识图谱主动搜索[J]. 计算机研究与发展, 2020, 57(12): 2501–2513. doi: 10.7544/issn1000-1239.2020.20200750

    WANG Meng, WANG Jingting, JIANG Yinlin, et al. Hybrid human-machine active search over knowledge graph[J]. Journal of Computer Research and Development, 2020, 57(12): 2501–2513. doi: 10.7544/issn1000-1239.2020.20200750
    [11]
    曹明宇, 李青青, 杨志豪, 等. 基于知识图谱的原发性肝癌知识问答系统[J]. 中文信息学报, 2019, 33(6): 88–93. doi: 10.3969/j.issn.1003-0077.2019.06.013

    CAO Mingyu, LI Qingqing, YANG Zhihao, et al. A question answering system for primary liver cancer based on knowledge graph[J]. Journal of Chinese Information Processing, 2019, 33(6): 88–93. doi: 10.3969/j.issn.1003-0077.2019.06.013
    [12]
    董丽丽, 程炯, 张翔, 等. 融合知识图谱与深度学习的疾病诊断方法研究[J]. 计算机科学与探索, 2020, 14(5): 815–824. doi: 10.3778/j.issn.1673-9418.1908018

    DONG Lili, CHENG Jiong, ZHANG Xiang, et al. Research on disease diagnosis method combining knowledge graph and deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 815–824. doi: 10.3778/j.issn.1673-9418.1908018
    [13]
    林海舟. 基于知识图谱的航空安全事件推理方法的研究[D]. [硕士论文], 中国民航大学, 2020.

    LIN Haizhou. Research on reasoning method of aviation safety events based on knowledge graph[D]. [Master dissertation], Civil Aviation University of China, 2020.
    [14]
    虞凤萍. 基于知识图谱的可解释临床事件预测方法研究[D]. [硕士论文], 山东师范大学, 2021.

    YU Fengping. Interpretable predicting methods of clinical events based on knowledge graph[D]. [Master dissertation], Shandong Normal University, 2021.
    [15]
    张善文, 王振, 王祖良. 结合知识图谱与双向长短时记忆网络的小麦条锈病预测[J]. 农业工程学报, 2020, 36(12): 172–178. doi: 10.11975/j.issn.1002-6819.2020.12.021

    ZHANG Shanwen, WANG Zhen, and WANG Zuliang. Prediction of wheat stripe rust disease by combining knowledge graph and bidirectional long short term memory network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 172–178. doi: 10.11975/j.issn.1002-6819.2020.12.021
    [16]
    SEKINE S. NYU: Description of the Japanese NE system used for MET-2[C]. Seventh Message Understanding Conference, Fairfax, USA, 1998.
    [17]
    徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4): 589–606. doi: 10.3969/j.issn.1001-0548.2016.04.012

    XU Zenglin, SHENG Yongpan, HE Lirong, et al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 589–606. doi: 10.3969/j.issn.1001-0548.2016.04.012
    [18]
    李世宝, 张益维, 刘建航, 等. 基于知识图谱共同邻居排序采样的推荐模型[J]. 电子与信息学报, 2021, 43(12): 3522–3529. doi: 10.11999/JEIT200735

    LI Shibao, ZHANG Yiwei, LIU Jianhang, et al. Recommendation model based on public neighbor sorting and sampling of knowledge graph[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3522–3529. doi: 10.11999/JEIT200735
    [19]
    刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582–600. doi: 10.7544/issn1000-1239.2016.20148228

    LIU Qiao, LI Yang, DUAN Hong, et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016, 53(3): 582–600. doi: 10.7544/issn1000-1239.2016.20148228
    [20]
    SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]. 15th International Conference on the Semantic Web, Heraklion, Greece, 2018: 593–607.
    [21]
    KIP T N and WELLING M. Semi-supervised classification with graph convolutional networks[C]. 5th International Conference on Learning Representations, Toulon, France, 2017.
    [22]
    向敏, 饶华阳, 张进进, 等. 基于图卷积神经网络的软件定义电力通信网络路由控制策略[J]. 电子与信息学报, 2021, 43(2): 388–395. doi: 10.11999/JEIT190971

    XIANG Min, RAO Huayang, ZHANG Jinjin, et al. Software-defined power communication network routing control strategy based on graph convolution network[J]. Journal of Electronics &Information Technology, 2021, 43(2): 388–395. doi: 10.11999/JEIT190971
    [23]
    王汝言, 陶中原, 赵容剑, 等. 多交互图卷积网络用于方面情感分析[J]. 电子与信息学报, 2022, 44(3): 1111–1118. doi: 10.11999/JEIT210459

    WANG Ruyan, TAO Zhongyuan, ZHAO Rongjian, et al. Multi-interaction graph convolutional networks for aspectlevel sentiment analysis[J]. Journal of Electronics &Information Technologyy, 2022, 44(3): 1111–1118. doi: 10.11999/JEIT210459
    [24]
    李玉格. 营养学知识图谱构建及补全技术研究[D]. [硕士论文], 哈尔滨工业大学, 2020.

    LI Yuge. Research on construction and completion technology of nutrition knowledge graph[D]. [Master dissertation], Harbin Institute of Technology, 2020.
    [25]
    DEFFERRARD M, BRESSON X, and VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 3844–3852.
    [26]
    HAMMOND D K, VANDERGHEYNST P, and GRIBONVAL R. Wavelets on graphs via spectral graph theory[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 129–150. doi: 10.1016/j.acha.2010.04.005
    [27]
    张金斗. 知识图谱分布式表示学习方法及应用研究[D]. [博士论文], 中国科学技术大学, 2021.

    ZHANG Jindou. Learning methods and application of knowledge graph distributed representation[D]. [Ph. D. dissertation], University of Science and Technology of China, 2021.
    [28]
    蔡毅, 邢岩, 胡丹. 敏感性分析综述[J]. 北京师范大学学报:自然科学版, 2008, 44(1): 9–16. doi: 10.3321/j.issn:0476-0301.2008.01.003

    CAI Yi, XING Yan, and HU Dan. On sensitivity analysis[J]. Journal of Beijing Normal University:Natural Science, 2008, 44(1): 9–16. doi: 10.3321/j.issn:0476-0301.2008.01.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (1551) PDF downloads(264) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return