Citation: | ZHU Guangyu, ZHANG Meng, YI Yang. Prediction of Evolution Results of Urban Rail Transit Emergencies Based on Knowledge Graph[J]. Journal of Electronics & Information Technology, 2023, 45(3): 949-957. doi: 10.11999/JEIT211594 |
[1] |
封超, 杨乃定, 桂维民, 等. 基于案例推理的突发事件应急方案生成方法[J]. 控制与决策, 2016, 31(8): 1526–1530. doi: 10.13195/j.kzyjc.2015.0696
FENG Chao, YANG Naiding, GUI Weimin, et al. Method for generating emergency alternative based on case-based reasoning[J]. Control and Decision, 2016, 31(8): 1526–1530. doi: 10.13195/j.kzyjc.2015.0696
|
[2] |
张力菠, 韩玉启, 陈杰, 等. 供应链管理的系统动力学研究综述[J]. 系统工程, 2005, 23(6): 8–15. doi: 10.3969/j.issn.1001-4098.2005.06.002
ZHANG Libo, HAN Yuqi, CHEN Jie, et al. A review: The application of system dynamics in supply chain management[J]. Systems Engineering, 2005, 23(6): 8–15. doi: 10.3969/j.issn.1001-4098.2005.06.002
|
[3] |
马骁. 基于系统动力学的城市轨道交通车站客流仿真与控制研究[D]. [硕士论文], 北京交通大学, 2019.
MA Xiao. Research on passenger flow simulation and control of urban rail transit station based on system dynamics[D]. [Master dissertation], Beijing Jiaotong University, 2019.
|
[4] |
董士浩, 李稚. 基于系统动力学的国际供应链金融风险预测[J]. 财会月刊, 2019(12): 170–176. doi: 10.19641/j.cnki.42-1290/f.2019.12.022
DONG Shihao and LI Zhi. Forecasting of financial risks in international supply chain by system dynamics method[J]. Finance and Accounting Monthly, 2019(12): 170–176. doi: 10.19641/j.cnki.42-1290/f.2019.12.022
|
[5] |
王其藩. 系统动力学[M]. 北京: 清华大学出版社, 1994: 41–45.
WANG Qifan. System Dynamics[M]. Beijing: Tsinghua University Press, 1994: 41–45.
|
[6] |
李肖冰. 基于系统动力学的中国能源供求预测模型研究[D]. [硕士论文], 内蒙古科技大学, 2015.
LI Xiaobing. The research of energy demand and supply forecast model of China based on system dynamics[D]. [Master dissertation], Inner Mongolia University of Science & Technology, 2015.
|
[7] |
徐曼, 沈江, 余海燕. 数据驱动的医疗与健康决策支持研究综述[J]. 工业工程与管理, 2017, 22(1): 1–13. doi: 10.19495/j.cnki.1007-5429.2017.01.001
XU Man, SHEN Jiang, and YU Haiyan. A review on data-driven healthcare decision-making support[J]. Industrial Engineering and Management, 2017, 22(1): 1–13. doi: 10.19495/j.cnki.1007-5429.2017.01.001
|
[8] |
强韶华, 罗云鹿, 李玉鹏, 等. 基于RBR和CBR的金融事件本体推理研究[J]. 数据分析与知识发现, 2019, 3(8): 94–104. doi: 10.11925/infotech.2096-3467.2018.1137
QIANG Shaohua, LUO Yunlu, LI Yupeng, et al. Ontology reasoning for financial affairs with RBR and CBR[J]. Data Analysis and Knowledge Discovery, 2019, 3(8): 94–104. doi: 10.11925/infotech.2096-3467.2018.1137
|
[9] |
官赛萍, 靳小龙, 贾岩涛, 等. 面向知识图谱的知识推理研究进展[J]. 软件学报, 2018, 29(10): 2966–2994. doi: 10.13328/j.cnki.jos.005551
GUAN Saiping, JIN Xiaolong, JIA Yantao, et al. Knowledge reasoning over knowledge graph: A survey[J]. Journal of Software, 2018, 29(10): 2966–2994. doi: 10.13328/j.cnki.jos.005551
|
[10] |
王萌, 王靖婷, 江胤霖, 等. 人机混合的知识图谱主动搜索[J]. 计算机研究与发展, 2020, 57(12): 2501–2513. doi: 10.7544/issn1000-1239.2020.20200750
WANG Meng, WANG Jingting, JIANG Yinlin, et al. Hybrid human-machine active search over knowledge graph[J]. Journal of Computer Research and Development, 2020, 57(12): 2501–2513. doi: 10.7544/issn1000-1239.2020.20200750
|
[11] |
曹明宇, 李青青, 杨志豪, 等. 基于知识图谱的原发性肝癌知识问答系统[J]. 中文信息学报, 2019, 33(6): 88–93. doi: 10.3969/j.issn.1003-0077.2019.06.013
CAO Mingyu, LI Qingqing, YANG Zhihao, et al. A question answering system for primary liver cancer based on knowledge graph[J]. Journal of Chinese Information Processing, 2019, 33(6): 88–93. doi: 10.3969/j.issn.1003-0077.2019.06.013
|
[12] |
董丽丽, 程炯, 张翔, 等. 融合知识图谱与深度学习的疾病诊断方法研究[J]. 计算机科学与探索, 2020, 14(5): 815–824. doi: 10.3778/j.issn.1673-9418.1908018
DONG Lili, CHENG Jiong, ZHANG Xiang, et al. Research on disease diagnosis method combining knowledge graph and deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 815–824. doi: 10.3778/j.issn.1673-9418.1908018
|
[13] |
林海舟. 基于知识图谱的航空安全事件推理方法的研究[D]. [硕士论文], 中国民航大学, 2020.
LIN Haizhou. Research on reasoning method of aviation safety events based on knowledge graph[D]. [Master dissertation], Civil Aviation University of China, 2020.
|
[14] |
虞凤萍. 基于知识图谱的可解释临床事件预测方法研究[D]. [硕士论文], 山东师范大学, 2021.
YU Fengping. Interpretable predicting methods of clinical events based on knowledge graph[D]. [Master dissertation], Shandong Normal University, 2021.
|
[15] |
张善文, 王振, 王祖良. 结合知识图谱与双向长短时记忆网络的小麦条锈病预测[J]. 农业工程学报, 2020, 36(12): 172–178. doi: 10.11975/j.issn.1002-6819.2020.12.021
ZHANG Shanwen, WANG Zhen, and WANG Zuliang. Prediction of wheat stripe rust disease by combining knowledge graph and bidirectional long short term memory network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 172–178. doi: 10.11975/j.issn.1002-6819.2020.12.021
|
[16] |
SEKINE S. NYU: Description of the Japanese NE system used for MET-2[C]. Seventh Message Understanding Conference, Fairfax, USA, 1998.
|
[17] |
徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4): 589–606. doi: 10.3969/j.issn.1001-0548.2016.04.012
XU Zenglin, SHENG Yongpan, HE Lirong, et al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 589–606. doi: 10.3969/j.issn.1001-0548.2016.04.012
|
[18] |
李世宝, 张益维, 刘建航, 等. 基于知识图谱共同邻居排序采样的推荐模型[J]. 电子与信息学报, 2021, 43(12): 3522–3529. doi: 10.11999/JEIT200735
LI Shibao, ZHANG Yiwei, LIU Jianhang, et al. Recommendation model based on public neighbor sorting and sampling of knowledge graph[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3522–3529. doi: 10.11999/JEIT200735
|
[19] |
刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582–600. doi: 10.7544/issn1000-1239.2016.20148228
LIU Qiao, LI Yang, DUAN Hong, et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016, 53(3): 582–600. doi: 10.7544/issn1000-1239.2016.20148228
|
[20] |
SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]. 15th International Conference on the Semantic Web, Heraklion, Greece, 2018: 593–607.
|
[21] |
KIP T N and WELLING M. Semi-supervised classification with graph convolutional networks[C]. 5th International Conference on Learning Representations, Toulon, France, 2017.
|
[22] |
向敏, 饶华阳, 张进进, 等. 基于图卷积神经网络的软件定义电力通信网络路由控制策略[J]. 电子与信息学报, 2021, 43(2): 388–395. doi: 10.11999/JEIT190971
XIANG Min, RAO Huayang, ZHANG Jinjin, et al. Software-defined power communication network routing control strategy based on graph convolution network[J]. Journal of Electronics &Information Technology, 2021, 43(2): 388–395. doi: 10.11999/JEIT190971
|
[23] |
王汝言, 陶中原, 赵容剑, 等. 多交互图卷积网络用于方面情感分析[J]. 电子与信息学报, 2022, 44(3): 1111–1118. doi: 10.11999/JEIT210459
WANG Ruyan, TAO Zhongyuan, ZHAO Rongjian, et al. Multi-interaction graph convolutional networks for aspectlevel sentiment analysis[J]. Journal of Electronics &Information Technologyy, 2022, 44(3): 1111–1118. doi: 10.11999/JEIT210459
|
[24] |
李玉格. 营养学知识图谱构建及补全技术研究[D]. [硕士论文], 哈尔滨工业大学, 2020.
LI Yuge. Research on construction and completion technology of nutrition knowledge graph[D]. [Master dissertation], Harbin Institute of Technology, 2020.
|
[25] |
DEFFERRARD M, BRESSON X, and VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 3844–3852.
|
[26] |
HAMMOND D K, VANDERGHEYNST P, and GRIBONVAL R. Wavelets on graphs via spectral graph theory[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 129–150. doi: 10.1016/j.acha.2010.04.005
|
[27] |
张金斗. 知识图谱分布式表示学习方法及应用研究[D]. [博士论文], 中国科学技术大学, 2021.
ZHANG Jindou. Learning methods and application of knowledge graph distributed representation[D]. [Ph. D. dissertation], University of Science and Technology of China, 2021.
|
[28] |
蔡毅, 邢岩, 胡丹. 敏感性分析综述[J]. 北京师范大学学报:自然科学版, 2008, 44(1): 9–16. doi: 10.3321/j.issn:0476-0301.2008.01.003
CAI Yi, XING Yan, and HU Dan. On sensitivity analysis[J]. Journal of Beijing Normal University:Natural Science, 2008, 44(1): 9–16. doi: 10.3321/j.issn:0476-0301.2008.01.003
|