Citation: | XIANG Sen, WANG Yingfeng, DENG Huiping, WU Jin, YU Li. Zero-shot Learning for Low-light Image Enhancement Based on Dual Iteration[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3379-3388. doi: 10.11999/JEIT211593 |
[1] |
杨燕, 王志伟. 基于均值不等关系优化的自适应图像去雾算法[J]. 电子与信息学报, 2020, 42(3): 755–763. doi: 10.11999/JEIT190368
YANG Yan and WANG Zhiwei. Adaptive image dehazing algorithm based on mean unequal relation optimization[J]. Journal of Electronics &Information Technology, 2020, 42(3): 755–763. doi: 10.11999/JEIT190368
|
[2] |
PAN Jinshan, REN Wenqi, HU Zhe, et al. Learning to Deblur images with exemplars[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(6): 1412–1425. doi: 10.1109/TPAMI.2018.2832125
|
[3] |
LI Chongyi, ANWAR S, and PORIKLI F. Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 2020, 98: 107038. doi: 10.1016/j.patcog.2019.107038
|
[4] |
陈勇, 詹帝, 刘焕淋. 基于物理模型与边界约束的低照度图像增强算法[J]. 电子与信息学报, 2017, 39(12): 2962–2969. doi: 10.11999/JEIT170267
CHEN Yong, ZHAN Di, and LIU Huanlin. Enhancement algorithm for low-lighting images based on physical model and boundary constraint[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2962–2969. doi: 10.11999/JEIT170267
|
[5] |
柳长源, 王琪, 毕晓君. 基于多通道多尺度卷积神经网络的单幅图像去雨方法[J]. 电子与信息学报, 2020, 42(9): 2285–2292. doi: 10.11999/JEIT190755
LIU Changyuan, WANG Qi, and BI Xiaojun. Research on rain removal method for single image based on multi-channel and multi-scale CNN[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2285–2292. doi: 10.11999/JEIT190755
|
[6] |
PIZER S M, AMBURN E P, AUSTIN J D, et al. Adaptive histogram equalization and its variations[J]. Computer Vision, Graphics, and Image Processing, 1987, 39(3): 355–368. doi: 10.1016/S0734-189X(87)80186-X
|
[7] |
IBRAHIM H and KONG N S P. Brightness preserving dynamic histogram equalization for image contrast enhancement[J]. IEEE Transactions on Consumer Electronics, 2007, 53(4): 1752–1758. doi: 10.1109/TCE.2007.4429280
|
[8] |
RAHMAN Z, JOBSON D J, and WOODELL G A. Multi-scale retinex for color image enhancement[C]. Proceedings of 3rd IEEE International Conference on Image Processing, Lausanne, Switzerland, 1996: 1003–1006.
|
[9] |
GUO Xiaojie, LI Yu, and LING Haibin. LIME: Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 982–993. doi: 10.1109/TIP.2016.2639450
|
[10] |
LI Mading, LIU Jiaying, YANG Wenhan, et al. Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2828–2841. doi: 10.1109/TIP.2018.2810539
|
[11] |
DONG Xuan, WANG Guan, PANG Yi, et al. Fast efficient algorithm for enhancement of low lighting video[C]. 2011 IEEE International Conference on Multimedia and Expo, Barcelona, Spain, 2011: 1–6.
|
[12] |
LORE K G, AKINTAYO A, SARKAR S, et al. LLNet: A deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61: 650–662. doi: 10.1016/j.patcog.2016.06.008
|
[13] |
WEI Chen, WANG Wenjing, YANG Wenhan, et al. Deep Retinex decomposition for low-light enhancement[EB/OL]. https://arxiv.org/abs/1808.04560, 2018.
|
[14] |
REN Wenqi, LIU Sifei, MA Lin, et al. Low-light image enhancement via a deep hybrid network[J]. IEEE Transactions on Image Processing, 2019, 28(9): 4364–4375. doi: 10.1109/TIP.2019.2910412
|
[15] |
JIANG Yifan, GONG Xinyu, LIU Ding, et al. EnlightenGAN: Deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340–2349. doi: 10.1109/TIP.2021.3051462
|
[16] |
GUO Chunle, LI Chongyi, GUO Jichang, et al. Zero-reference deep curve estimation for low-light image enhancement[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 1777–1786.
|
[17] |
ZHU Anqi, ZHANG Lin, SHEN Ying, et al. Zero-shot restoration of underexposed images via robust Retinex decomposition[C]. 2020 IEEE International Conference on Multimedia and Expo (ICME), London, UK, 2020: 1–6.
|
[18] |
方明, 刘小晗, 付飞蚺. 基于注意力的多尺度水下图像增强网络[J]. 电子与信息学报, 2021, 43(12): 3513–3521. doi: 10.11999/JEIT200836
FANG Ming, LIU Xiaohan, and FU Feiran. Multi-scale underwater image enhancement network based on attention mechanism[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3513–3521. doi: 10.11999/JEIT200836
|
[19] |
LI Tao, ZHU Chuang, SONG Jiawen, et al. Low-light image enhancement using CNN and bright channel prior[C]. IEEE International Conference on Image Processing (ICIP), Beijing, China, 2017: 3215–3219,
|
[20] |
HE Kaiming, SUN Jian, TANG Xiaoou, et al. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353. doi: 10.1109/TPAMI.2010.168
|
[21] |
LIU Ziwei, LI Xiaoxiao, LUO Ping, et al. Deep learning markov random field for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(8): 1814–1828. doi: 10.1109/TPAMI.2017.2737535
|
[22] |
MERTENS T, KAUTZ J, and VAN REETH F. Exposure fusion: A simple and practical alternative to high dynamic range photography[J]. Computer Graphics Forum, 2009, 28(1): 161–171. doi: 10.1111/j.1467-8659.2008.01171.x
|
[23] |
YANG Wenhan, WANG Wenjing, HUANG Haofeng, et al. Sparse gradient regularized deep retinex network for robust low-light image enhancement[J]. IEEE Transactions on Image Processing, 2021, 30: 2072–2086. doi: 10.1109/TIP.2021.3050850
|
[24] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].https://arxiv.org/abs/1409.1556, 2014.
|
[25] |
MITTAL A, SOUNDARARAJAN R, and BOVIK A C. Making a 'Completely Blind' image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209–212. doi: 10.1109/LSP.2012.2227726
|
[26] |
LIU Lixiong, LIU Bao, HUANG Hua, et al. No-reference image quality assessment based on spatial and spectral entropies[J]. Signal Processing:Image Communication, 2014, 29(8): 856–863. doi: 10.1016/j.image.2014.06.006
|
[27] |
WU Jun, XIA Zhaoqiang, REN Yifeng, et al. No-reference quality assessment for contrast-distorted image[C]. 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA), Oulu, Finland, 2016: 1–5.
|