Citation: | LIN Xin, LIU Aijun, LIANG Xiaohu, HAN Chen. A Vehicle-to-Vehicle Channel Model for Tactical Communication Environments[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1023-1031. doi: 10.11999/JEIT211587 |
[1] |
ZHAN Yuting, ZHANG Weile, and DENG Hao. Sparsity-aware direct equalization of time-varying channels for V2V communications[J]. IEEE Wireless Communications Letters, 2021, 10(2): 387–391. doi: 10.1109/LWC.2020.3032595
|
[2] |
ZAJIĆ A G. Impact of Moving scatterers on vehicle-to-vehicle narrow-band channel characteristics[J]. IEEE Transactions on Vehicular Technology, 2014, 63(7): 3094–3106. doi: 10.1109/TVT.2014.2299239
|
[3] |
YANG Mi, AI Bo, HE Ruisi, et al. Measurements and cluster-based modeling of vehicle-to-vehicle channels with large vehicle obstructions[J]. IEEE Transactions on Wireless Communications, 2020, 19(9): 5860–5874. doi: 10.1109/TWC.2020.2997808
|
[4] |
LI Wei, HU Xiaoya, GAO Jie, et al. Measurements and analysis of propagation channels in vehicle-to-infrastructure scenarios[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3550–3561. doi: 10.1109/TVT.2020.2972150
|
[5] |
SUN Shu, RAPPAPORT T S, SHAFI M, et al. Propagation models and performance evaluation for 5G millimeter-wave bands[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8422–8439. doi: 10.1109/TVT.2018.2848208
|
[6] |
SHAFI M, ZHANG Jianhua, TATARIA H, et al. Microwave vs. Millimeter-wave propagation channels: Key differences and impact on 5G cellular systems[J]. IEEE Communications Magazine, 2018, 56(12): 14–20. doi: 10.1109/MCOM.2018.1800255
|
[7] |
BAI Lu, HUANG Ziwei, DU Haohua, et al. A 3-D non-stationary wideband V2V GBSM with UPAs for massive MIMO wireless communication systems[J]. IEEE Internet of Things Journal, 2021, 8(24): 17622–17638. doi: 10.1109/JIOT.2021.3081816
|
[8] |
WU Shangbin, WANG Chengxiang, AGGOUNE M H M, et al. A general 3-D non-stationary 5G wireless channel model[J]. IEEE Transactions on Communications, 2018, 66(7): 3065–3078. doi: 10.1109/TCOMM.2017.2779128
|
[9] |
梁晓林, 赵雄文, 李亦天. 移动散射体下的V2V信道相关性和多普勒谱特性研究[J]. 电子与信息学报, 2017, 39(3): 613–618. doi: 10.11999/JEIT160412
LIANG Xiaolin, ZHAO Xiongwen, and LI Yitian. Impact of moving scatterers in channel correlations and doppler spectral densities for vehicle-to-vehicle communications[J]. Journal of Electronics &Information Technology, 2017, 39(3): 613–618. doi: 10.11999/JEIT160412
|
[10] |
YANG Mi, AI Bo, HE Ruisi, et al. Non-stationary vehicular channel characterization in complicated scenarios[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 8387–8400. doi: 10.1109/TVT.2021.3096973
|
[11] |
WALTER M, SHUTIN D, SCHMIDHAMMER M, et al. Geometric analysis of the doppler frequency for general non-stationary 3D mobile-to-mobile channels based on prolate spheroidal coordinates[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10419–10434. doi: 10.1109/TVT.2020.3011408
|
[12] |
ALGHORANI Y, CHEKKOURI A S, CHEKIRED D A, et al. Improved S-AF and S-DF relaying schemes using machine learning based power allocation over cascaded rayleigh fading channels[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(12): 7508–7520. doi: 10.1109/TITS.2020.3003820
|
[13] |
WANG Jun, WANG Chengxiang, HUANG Jia, et al. A novel 3D non-stationary GBSM for 6G THz ultra-massive MIMO wireless systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 12312–12324. doi: 10.1109/TVT.2021.3117239
|
[14] |
ZHOU Tao, YANG Yi, LIU Liu, et al. A dynamic 3-D wideband GBSM for cooperative massive MIMO channels in intelligent high-speed railway communication systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(4): 2237–2250. doi: 10.1109/TWC.2020.3040392
|
[15] |
ZHOU Tao, TAO Cheng, SALOUS S, et al. Geometry-based multi-link channel modeling for high-speed train communication networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1229–1238. doi: 10.1109/TITS.2019.2905036
|
[16] |
RAKESH R T and VITERBO E. Channel modeling for wireless communications using ambit processes[J]. IEEE Transactions on Wireless Communications, 2020, 19(12): 8396–8409. doi: 10.1109/TWC.2020.3022589
|
[17] |
程翔, 张荣庆, 陈晨. 5G车联网技术及应用[M]. 北京: 科学出版社, 2020: 18–21.
|
[18] |
AKKI A S and HABER F. A statistical model of mobile-to-mobile land communication channel[J]. IEEE Transactions on Vehicular Technology, 1986, 35(1): 2–7. doi: 10.1109/T-VT.1986.24062
|
[19] |
SEN I and MATOLAK D W. Vehicle–vehicle channel models for the 5-GHz band[J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(2): 235–245. doi: 10.1109/TITS.2008.922881
|
[20] |
LI Cuiran, LIU Ling, and XIE Jianli. Finite-state Markov wireless channel modeling for railway tunnel environments[J]. China Communications, 2020, 17(2): 30–39. doi: 10.23919/JCC.2020.02.003
|
[21] |
MOLISCH A F, 田斌, 帖翊, 任光亮, 等译. 无线通信[M]. 2版. 北京: 电子工业出版社, 2020: 57–81.
MOLISCH A F, TIAN Bin, TIE Yi, REN Guangliang, et al. translation. Wireless Communications[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2020: 57–81.
|
[22] |
卢春兰, 杨涛, 余同彬, 等. 电波与光波传输技术[M]. 北京: 人民邮电出版社, 2013: 134–191.
LU Chunlan, YANG Tao, YU Tongbin, et al. Electromagnetic Wave and Optical Wave Transmission Technology[M]. Beijing: Posts & Telecom Press, 2013: 134–191.
|
[23] |
YANG Haibing, HERBEN M H A J, AKKERMANS I J A G, et al. Impact analysis of directional antennas and multiantenna beamformers on radio transmission[J]. IEEE Transactions on Vehicular Technology, 2008, 57(3): 1695–1707. doi: 10.1109/TVT.2007.907308
|
[24] |
盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 4版. 北京: 高等教育出版社, 2008: 73–74.
|