Advanced Search
Volume 45 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
LIN Xin, LIU Aijun, LIANG Xiaohu, HAN Chen. A Vehicle-to-Vehicle Channel Model for Tactical Communication Environments[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1023-1031. doi: 10.11999/JEIT211587
Citation: LIN Xin, LIU Aijun, LIANG Xiaohu, HAN Chen. A Vehicle-to-Vehicle Channel Model for Tactical Communication Environments[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1023-1031. doi: 10.11999/JEIT211587

A Vehicle-to-Vehicle Channel Model for Tactical Communication Environments

doi: 10.11999/JEIT211587
Funds:  The Natural Science Foundation on Frontier Leading Technology Basic Research Project of Jiangsu Province (BK20192002), The National Key Research and Development Program of China (2018YFB1801103), The Research Program of National University of Defense Technology (ZK22-08)
  • Received Date: 2021-12-28
  • Rev Recd Date: 2022-05-28
  • Available Online: 2022-06-15
  • Publish Date: 2023-03-10
  • In the tactical communication environments, the characteristics of the wireless channel between mobile vehicle platforms become more complicated. The impact of the special tactical factors is not taken into account in the traditional mobile channel models. Therefore, these models are difficult to be applied directly to the design and optimization of vehicular systems in the tactical scenarios. In order to address the limitation of traditional mobile channel models, a Tactical Vehicle-to-Vehicle (T-V2V) channel model is proposed for the tactical communication environments, which considers jointly the influences of the mutual movement between two vehicle platforms, the alignment problem of directional antennas and the tactical terrain. Then, the proposed model is statistically analyzed based on the index of the Lever Crossing Rate (LCR) and the Average Duration of Fading (ADF). The simulation results show that the proposed model is more suitable for the actual situation and reflects the changing characteristics of V2V channel more accurately in the tactical environments. Finally, the relevant factors of the proposed model are analyzed and the conclusions can provide important guiding significance for the physical layer design in tactical communication environments.
  • loading
  • [1]
    ZHAN Yuting, ZHANG Weile, and DENG Hao. Sparsity-aware direct equalization of time-varying channels for V2V communications[J]. IEEE Wireless Communications Letters, 2021, 10(2): 387–391. doi: 10.1109/LWC.2020.3032595
    [2]
    ZAJIĆ A G. Impact of Moving scatterers on vehicle-to-vehicle narrow-band channel characteristics[J]. IEEE Transactions on Vehicular Technology, 2014, 63(7): 3094–3106. doi: 10.1109/TVT.2014.2299239
    [3]
    YANG Mi, AI Bo, HE Ruisi, et al. Measurements and cluster-based modeling of vehicle-to-vehicle channels with large vehicle obstructions[J]. IEEE Transactions on Wireless Communications, 2020, 19(9): 5860–5874. doi: 10.1109/TWC.2020.2997808
    [4]
    LI Wei, HU Xiaoya, GAO Jie, et al. Measurements and analysis of propagation channels in vehicle-to-infrastructure scenarios[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3550–3561. doi: 10.1109/TVT.2020.2972150
    [5]
    SUN Shu, RAPPAPORT T S, SHAFI M, et al. Propagation models and performance evaluation for 5G millimeter-wave bands[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8422–8439. doi: 10.1109/TVT.2018.2848208
    [6]
    SHAFI M, ZHANG Jianhua, TATARIA H, et al. Microwave vs. Millimeter-wave propagation channels: Key differences and impact on 5G cellular systems[J]. IEEE Communications Magazine, 2018, 56(12): 14–20. doi: 10.1109/MCOM.2018.1800255
    [7]
    BAI Lu, HUANG Ziwei, DU Haohua, et al. A 3-D non-stationary wideband V2V GBSM with UPAs for massive MIMO wireless communication systems[J]. IEEE Internet of Things Journal, 2021, 8(24): 17622–17638. doi: 10.1109/JIOT.2021.3081816
    [8]
    WU Shangbin, WANG Chengxiang, AGGOUNE M H M, et al. A general 3-D non-stationary 5G wireless channel model[J]. IEEE Transactions on Communications, 2018, 66(7): 3065–3078. doi: 10.1109/TCOMM.2017.2779128
    [9]
    梁晓林, 赵雄文, 李亦天. 移动散射体下的V2V信道相关性和多普勒谱特性研究[J]. 电子与信息学报, 2017, 39(3): 613–618. doi: 10.11999/JEIT160412

    LIANG Xiaolin, ZHAO Xiongwen, and LI Yitian. Impact of moving scatterers in channel correlations and doppler spectral densities for vehicle-to-vehicle communications[J]. Journal of Electronics &Information Technology, 2017, 39(3): 613–618. doi: 10.11999/JEIT160412
    [10]
    YANG Mi, AI Bo, HE Ruisi, et al. Non-stationary vehicular channel characterization in complicated scenarios[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 8387–8400. doi: 10.1109/TVT.2021.3096973
    [11]
    WALTER M, SHUTIN D, SCHMIDHAMMER M, et al. Geometric analysis of the doppler frequency for general non-stationary 3D mobile-to-mobile channels based on prolate spheroidal coordinates[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10419–10434. doi: 10.1109/TVT.2020.3011408
    [12]
    ALGHORANI Y, CHEKKOURI A S, CHEKIRED D A, et al. Improved S-AF and S-DF relaying schemes using machine learning based power allocation over cascaded rayleigh fading channels[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(12): 7508–7520. doi: 10.1109/TITS.2020.3003820
    [13]
    WANG Jun, WANG Chengxiang, HUANG Jia, et al. A novel 3D non-stationary GBSM for 6G THz ultra-massive MIMO wireless systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 12312–12324. doi: 10.1109/TVT.2021.3117239
    [14]
    ZHOU Tao, YANG Yi, LIU Liu, et al. A dynamic 3-D wideband GBSM for cooperative massive MIMO channels in intelligent high-speed railway communication systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(4): 2237–2250. doi: 10.1109/TWC.2020.3040392
    [15]
    ZHOU Tao, TAO Cheng, SALOUS S, et al. Geometry-based multi-link channel modeling for high-speed train communication networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1229–1238. doi: 10.1109/TITS.2019.2905036
    [16]
    RAKESH R T and VITERBO E. Channel modeling for wireless communications using ambit processes[J]. IEEE Transactions on Wireless Communications, 2020, 19(12): 8396–8409. doi: 10.1109/TWC.2020.3022589
    [17]
    程翔, 张荣庆, 陈晨. 5G车联网技术及应用[M]. 北京: 科学出版社, 2020: 18–21.
    [18]
    AKKI A S and HABER F. A statistical model of mobile-to-mobile land communication channel[J]. IEEE Transactions on Vehicular Technology, 1986, 35(1): 2–7. doi: 10.1109/T-VT.1986.24062
    [19]
    SEN I and MATOLAK D W. Vehicle–vehicle channel models for the 5-GHz band[J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(2): 235–245. doi: 10.1109/TITS.2008.922881
    [20]
    LI Cuiran, LIU Ling, and XIE Jianli. Finite-state Markov wireless channel modeling for railway tunnel environments[J]. China Communications, 2020, 17(2): 30–39. doi: 10.23919/JCC.2020.02.003
    [21]
    MOLISCH A F, 田斌, 帖翊, 任光亮, 等译. 无线通信[M]. 2版. 北京: 电子工业出版社, 2020: 57–81.

    MOLISCH A F, TIAN Bin, TIE Yi, REN Guangliang, et al. translation. Wireless Communications[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2020: 57–81.
    [22]
    卢春兰, 杨涛, 余同彬, 等. 电波与光波传输技术[M]. 北京: 人民邮电出版社, 2013: 134–191.

    LU Chunlan, YANG Tao, YU Tongbin, et al. Electromagnetic Wave and Optical Wave Transmission Technology[M]. Beijing: Posts & Telecom Press, 2013: 134–191.
    [23]
    YANG Haibing, HERBEN M H A J, AKKERMANS I J A G, et al. Impact analysis of directional antennas and multiantenna beamformers on radio transmission[J]. IEEE Transactions on Vehicular Technology, 2008, 57(3): 1695–1707. doi: 10.1109/TVT.2007.907308
    [24]
    盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 4版. 北京: 高等教育出版社, 2008: 73–74.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (627) PDF downloads(110) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return