Citation: | LIU Jinfeng, CHEN Haowei, HERBERT Ho-Ching Iu. Li-ion Batteries Life Prediction Based on Variational Modal Decomposition and DAIPSO-GPR to Solve the Capacity Regeneration Phenomenon[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1111-1120. doi: 10.11999/JEIT211585 |
[1] |
LIU Wei and XU Yan. Data-driven online health estimation of Li-ion batteries using a novel energy-based health indicator[J]. IEEE Transactions on Energy Conversion, 2020, 35(3): 1715–1718. doi: 10.1109/TEC.2020.2995112
|
[2] |
QU Jiantao, LIU Feng, MA Yuxiang, et al. A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery[J]. IEEE Access, 2019, 7: 87178–87191. doi: 10.1109/ACCESS.2019.2925468
|
[3] |
GOU Bin, XU Yan, and FENG Xue. State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10854–10867. doi: 10.1109/TVT.2020.3014932
|
[4] |
CHAOUI H and IBE-EKEOCHA C C. State of charge and state of health estimation for lithium batteries using recurrent neural networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(10): 8773–8783. doi: 10.1109/TVT.2017.2715333
|
[5] |
ZHENG Xueying and DENG Xiaogang. State-of-health prediction for lithium-ion batteries with multiple Gaussian process regression model[J]. IEEE Access, 2019, 7: 150383–150394. doi: 10.1109/ACCESS.2019.2947294
|
[6] |
ZHOU Yapeng and HUANG Miaohua. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model[J]. Microelectronics Reliability, 2016, 65: 265–273. doi: 10.1016/j.microrel.2016.07.151
|
[7] |
FENG Xuning, WENG Caihao, HE Xiangming, et al. Online state-of-health estimation for Li-ion battery using partial charging segment based on support vector machine[J]. IEEE Transactions on Vehicular Technology, 2019, 68(9): 8583–8592. doi: 10.1109/TVT.2019.2927120
|
[8] |
WIDODO A, SHIM M C, CAESARENDRA W, et al. Intelligent prognostics for battery health monitoring based on sample entropy[J]. Expert Systems with Applications, 2011, 38(9): 11763–11769. doi: 10.1016/j.eswa.2011.03.063
|
[9] |
DONG Hancheng, JIN Xiaoning, LOU Yangbing, et al. Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter[J]. Journal of Power Sources, 2014, 271: 114–123. doi: 10.1016/j.jpowsour.2014.07.176
|
[10] |
SUN Peikun and WANG Zhenpo. Research of the relationship between Li-ion battery charge performance and SOH based on MIGA-Gpr method[J]. Energy Procedia, 2016, 88: 608–613. doi: 10.1016/j.egypro.2016.06.086
|
[11] |
PENG Yu, HOU Yandong, SONG Yuchen, et al. Lithium-ion battery prognostics with hybrid Gaussian process function regression[J]. Energies, 2018, 11(6): 1420. doi: 10.3390/en11061420
|
[12] |
LIU Datong, ZHOU Jinbao, PENG Yu, et al. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2015, 45(6): 915–928. doi: 10.1109/TSMC.2015.2389757
|
[13] |
FENG Xuning, WENG Caihao, HE Xiangming, et al. Incremental capacity analysis on commercial lithium-ion batteries using support vector regression: A parametric study[J]. Energies, 2018, 11(9): 2323. doi: 10.3390/en11092323
|
[14] |
LEWERENZ M, MARONGIU A, WARNECKE A, et al. Differential voltage analysis as a tool for analyzing inhomogeneous aging: A case study for LiFePO4| Graphite cylindrical cells[J]. Journal of Power Sources, 2017, 368: 57–67. doi: 10.1016/j.jpowsour.2017.09.059
|
[15] |
HUA Xiao, ZHANG Teng, OFFER G J, et al. Towards online tracking of the shuttle effect in lithium sulfur batteries using differential thermal voltammetry[J]. Journal of Energy Storage, 2019, 21: 765–772. doi: 10.1016/j.est.2019.01.002
|
[16] |
WANG Zhenpo, YUAN Changgui, and LI Xiaoyu. Lithium Battery state-of-health estimation via differential thermal voltammetry with Gaussian process regression[J]. IEEE Transactions on Transportation Electrification, 2021, 7(1): 16–25. doi: 10.1109/TTE.2020.3028784
|
[17] |
ZHOU Di, YIN Hongtao, FU Ping, et al. Prognostics for state of health of lithium-ion batteries based on Gaussian process regression[J]. Mathematical Problems in Engineering, 2018, 2018: 8358025. doi: 10.1155/2018/8358025
|
[18] |
陈勇, 郑瀚, 沈奇翔, 等. 基于改进免疫粒子群优化算法的室内可见光通信三维定位方法[J]. 电子与信息学报, 2021, 43(1): 101–107. doi: 10.11999/JEIT190936
CHEN Yong, ZHENG Han, SHEN Qixiang, et al. Indoor three-dimensional positioning system based on visible light communication using improved immune PSO algorithm[J]. Journal of Electronics &Information Technology, 2021, 43(1): 101–107. doi: 10.11999/JEIT190936
|
[19] |
闫群民, 马瑞卿, 马永翔, 等. 一种自适应模拟退火粒子群优化算法[J]. 西安电子科技大学学报, 2021, 48(4): 120–127. doi: 10.19665/j.issn1001-2400.2021.04.016
YAN Qunmin, MA Ruiqing, MA Yongxiang, et al. Adaptive simulated annealing particle swarm optimization algorithm[J]. Journal of Xidian University, 2021, 48(4): 120–127. doi: 10.19665/j.issn1001-2400.2021.04.016
|
[20] |
昝涛, 庞兆亮, 王民, 等. 基于VMD的滚动轴承早期故障诊断方法[J]. 北京工业大学学报, 2019, 45(2): 103–110. doi: 10.11936/bjutxb2017090012
ZAN Tao, PANG Zhaoliang, WANG Min, et al. Early fault diagnosis method of rolling bearings based on VMD[J]. Journal of Beijing University of Technology, 2019, 45(2): 103–110. doi: 10.11936/bjutxb2017090012
|
[21] |
LONG Bing, LI Xiangnan, GAO Xiaoyu, et al. Prognostics comparison of lithium-ion battery based on the shallow and deep neural networks model[J]. Energies, 2019, 12(17): 3271. doi: 10.3390/en12173271
|
[22] |
XUE Zhiwei, ZHANG Yong, CHENG Cheng, et al. Remaining useful life prediction of lithium-ion batteries with adaptive unscented Kalman filter and optimized support vector regression[J]. Neurocomputing, 2020, 376: 95–102. doi: 10.1016/j.neucom.2019.09.074
|
[23] |
ZHANG Chaolong, HE Yigang, YUAN Lifeng, et al. Capacity prognostics of lithium-ion batteries using EMD denoising and multiple kernel RVM[J]. IEEE Access, 2017, 5: 12061–12070. doi: 10.1109/ACCESS.2017.2716353
|