Advanced Search
Volume 45 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
MAO Keji, WU Kunxiu, LU Wei, CHEN Lijian, MAO Jiafa. A Study of the CHN Intelligent Bone Age Assessment Method with Reference to Atlas Developmental Indications[J]. Journal of Electronics & Information Technology, 2023, 45(3): 958-967. doi: 10.11999/JEIT211577
Citation: MAO Keji, WU Kunxiu, LU Wei, CHEN Lijian, MAO Jiafa. A Study of the CHN Intelligent Bone Age Assessment Method with Reference to Atlas Developmental Indications[J]. Journal of Electronics & Information Technology, 2023, 45(3): 958-967. doi: 10.11999/JEIT211577

A Study of the CHN Intelligent Bone Age Assessment Method with Reference to Atlas Developmental Indications

doi: 10.11999/JEIT211577
Funds:  The National Natural Science Foundation of China(62072410), The Basic Public Welfare Research Project of Zhejiang Province (LGG22F020014)
  • Received Date: 2021-12-27
  • Accepted Date: 2022-08-02
  • Rev Recd Date: 2022-07-26
  • Available Online: 2022-08-04
  • Publish Date: 2023-03-10
  • Bone Age (BA) is one of the most important indicators in evaluating children's growth. The Bone Age Assessment (BAA) based on Chinese wrist bone development standard-CHN (CHN) scoring method is widely used in the evaluation of children's growth and development and height prediction. However, the adjacent developmental levels of some reference bones last longer, leading to the subjective judgment of developmental levels by experts based on personal experience, which affects the accuracy of predictions. When deep learning is used to evaluate the developmental levels of these atlases, the prediction results will be random. In this paper, based on more than 20000 X-ray images evaluated by experts, a new mature indicator with a large interval with a large interval is drawn to generate exquisite atlas to perform some reference bones. Additionally, the corresponding maturity score is determined by analyzing the level structure process to maximize the impact of error -level prediction on BAA. Combining Harris features and convolutional blocks of the convolutional neural network of the attention module is designed to evaluate automatically the level of bone maturity. In addition, an annotated database with an age distribution of 5-11 years is built to train and evaluate the method. The accuracy of predictions obtained by adding a new standard atlas to the CHN method reaches 94.6% and 99.13% when the tolerance is 0.5 years and 1 year, respectively. The experimental results show that the method proposed in this paper can distinguish the development degree of reference bones more precisely, and improve greatly the accuracy of BAA, proving the potential for practical clinical application.
  • loading
  • [1]
    潘复平, 张国栋. 骨龄与青春期发育关系的追踪观察[J]. 中华预防医学杂志, 1985, 19(2): 79–82.

    PAN Fuping and ZHANG Guodong. Follow-up observation on the relationship between bone age and puberty development[J]. Chinese Journal of Preventive Medicine, 1985, 19(2): 79–82.
    [2]
    邵伟东, 金春华, 潘慧, 等. 中国儿童手腕部骨龄评测标准CHN法与参考图谱[M]. 北京: 中国协和医科大学出版社, 2018: 15–20.

    SHAO Weidong, JIN Chunhua, PAN Hui, et al. Chinese Children's Wrist Bone Age Evaluation Standard[M]. Beijing: Peking Union Medical College Press, 2018: 15–20.
    [3]
    张烨城. 骨龄在体育教学及训练中的应用[J]. 青少年体育, 2018(9): 58–59. doi: 10.3969/j.issn.2095-4581.2018.09.037

    ZHANG Yecheng. Application of bone age in physical education teaching and training[J]. Youth Sport, 2018(9): 58–59. doi: 10.3969/j.issn.2095-4581.2018.09.037
    [4]
    沈勋章. 手腕部骨龄鉴定方法的研究进展[J]. 中国医药科学, 2011, 1(12): 9–12.

    SHEN Xunzhang. Identification of wrist skeletal age of the research progress[J]. China Medicine and Pharmacy, 2011, 1(12): 9–12.
    [5]
    SPAMPINATO C, PALAZZO S, GIORDANO D, et al. Deep learning for automated skeletal bone age assessment in X-ray images[J]. Medical Image Analysis, 2017, 36: 41–51. doi: 10.1016/j.media.2016.10.010
    [6]
    GREULICH W W and IDELL PYLE S. Radiographic atlas of skeletal development of the hand and wrist[J]. The American Journal of the Medical Sciences, 1959, 238(3): 393.
    [7]
    TANNER J M and WHITEHOUSE R H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty[J]. Archives of Disease in Childhood, 1976, 51(3): 170–179. doi: 10.1136/adc.51.3.170
    [8]
    叶义言. 新版骨龄评分法概述[J]. 中华儿科杂志, 2004, 42(1): 30–32. doi: 10.3760/j.issn:0578-1310.2004.01.009

    YE Yiyan. Overview of new version of bone age scoring method[J]. Chinese Journal of Pediatrics, 2004, 42(1): 30–32. doi: 10.3760/j.issn:0578-1310.2004.01.009
    [9]
    张绍岩, 花纪青, 刘丽娟, 等. 中国人手腕骨发育标准—中华05. III. 中国儿童骨发育的长期趋势[J]. 中国运动医学杂志, 2007, 26(2): 149–153. doi: 10.16038/j.1000-6710.2007.02.004

    ZHANG Shaoyan, HUA Jiqing, LIU Lijuan, et al. The standards of skeletal maturity of hand and wrist for Chinese-China 05. III. The secular trend of skeletal development in Chinese children[J]. Chinese Journal of Sports Medicine, 2007, 26(2): 149–153. doi: 10.16038/j.1000-6710.2007.02.004
    [10]
    张绍岩, 杨士增, 邵伟东, 等. 中国人手腕骨发育标准—CHN法[J]. 体育科学, 1993, 13(6): 33–39.

    ZHANG Shaoyan, YANG Shizeng, SHAO Weidong, et al. The standards of skeletal development of hand and wrist for Chinese-CHN method[J]. China Sports Science, 1993, 13(6): 33–39.
    [11]
    THODBERG H H, KREIBORG S, JUUL A, et al. The BoneXpert method for automated determination of skeletal maturity[J]. IEEE Transactions on Medical Imaging, 2009, 28(1): 52–66. doi: 10.1109/tmi.2008.926067
    [12]
    LEE H, TAJMIR S, LEE J, et al. Fully automated deep learning system for bone age assessment[J]. Journal of Digital Imaging, 2017, 30(4): 427–441. doi: 10.1007/s10278-017-9955-8
    [13]
    OQUAB M, BOTTOU L, LAPTEV I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1717–1724.
    [14]
    REN Xuhua, LI Tingting, YANG Xiujun, et al. Regression convolutional neural network for automated pediatric bone age assessment from hand radiograph[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(5): 2030–2038. doi: 10.1109/jbhi.2018.2876916
    [15]
    HAN Yaxin and WANG Guangbin. Skeletal bone age prediction based on a deep residual network with spatial transformer[J]. Computer Methods and Programs in Biomedicine, 2020, 197: 105754. doi: 10.1016/j.cmpb.2020.105754
    [16]
    LIU Bo, ZHANG Yu, CHU Meicheng, et al. Bone age assessment based on rank-monotonicity enhanced ranking CNN[J]. IEEE Access, 2019, 7: 120976–120983. doi: 10.1109/access.2019.2937341
    [17]
    SON S J, SONG Y, KIM N, et al. TW3-based fully automated bone age assessment system using deep neural networks[J]. IEEE Access, 2019, 7: 33346–33358. doi: 10.1109/access.2019.2903131
    [18]
    刘宗才, 吴锦华, 王荣品, 等. 深度学习骨龄评测系统对贵州省儿童及青少年骨龄测评的准确性[J]. 中国医学影像技术, 2019, 35(12): 1799–1803. doi: 10.13929/j.1003-3289.201907037

    LIU Zongcai, WU Jinhua, WANG Rongpin, et al. Accuracy of deep learning based bone age assessment system of children and adolescents in Guizhou[J]. Chinese Journal of Medical Imaging Technology, 2019, 35(12): 1799–1803. doi: 10.13929/j.1003-3289.201907037
    [19]
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/tpami.2016.2577031
    [20]
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386
    [21]
    LIU Jun, WANG Guang, DUAN Lingyu, et al. Skeleton-based human action recognition with global context-aware attention LSTM networks[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1586–1599. doi: 10.1109/tip.2017.2785279
    [22]
    WANG Jinrui, LI Shunming, AN Zenghui, et al. Batch-normalized deep neural networks for achieving fast intelligent fault diagnosis of machines[J]. Neurocomputing, 2019, 329: 53–65. doi: 10.1016/j.neucom.2018.10.049
    [23]
    DAHL G E, SAINATH T N, and HINTON G E. Improving deep neural networks for LVCSR using rectified linear units and dropout[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 8609–8613.
    [24]
    KO B, KIM H G, OH K J, et al. Controlled dropout: A different approach to using dropout on deep neural network[C]. 2017 IEEE International Conference on Big Data and Smart Computing, Jeju, Korea (South), 2017: 358–362.
    [25]
    WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19.
    [26]
    HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372
    [27]
    WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11531–11539.
    [28]
    LIU Haomiao, WANG Ruiping, SHAN Shiguang, et al. Deep supervised hashing for fast image retrieval[J]. International Journal of Computer Vision, 2019, 127(9): 1217–1234. doi: 10.1007/s11263-019-01174-4
    [29]
    WU E, KONG Bin, WANG Xin, et al. Residual attention based network for hand bone age assessment[C]. 2019 IEEE 16th International Symposium on Biomedical Imaging, Venice, Italy, 2018: 1158–1161.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(8)

    Article Metrics

    Article views (672) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return