Advanced Search
Volume 45 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
SU Yishan, ZHANG Hehe, ZHANG Rui, MA Suya, FAN Rong, FU Xiaomei, JIN Zhigang. Review of Security for Underwater Wireless Sensor Networks[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1121-1133. doi: 10.11999/JEIT211576
Citation: SU Yishan, ZHANG Hehe, ZHANG Rui, MA Suya, FAN Rong, FU Xiaomei, JIN Zhigang. Review of Security for Underwater Wireless Sensor Networks[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1121-1133. doi: 10.11999/JEIT211576

Review of Security for Underwater Wireless Sensor Networks

doi: 10.11999/JEIT211576
Funds:  The National Natural Science Foundation of China (62171310, 52171337)
  • Received Date: 2021-12-27
  • Accepted Date: 2022-06-08
  • Rev Recd Date: 2022-05-12
  • Available Online: 2022-06-13
  • Publish Date: 2023-03-10
  • Underwater Wireless Sensor Networks (UWSNs) are widely used in disaster warning, resource exploration and other fields. However, UWSNs are vulnerable to malicious attacks. Therefore, it is urgent to develop a security mechanism that can adapt to its characteristics, e.g. communication band width, propagation time extension, and severe spatio-temporal uncertainty. First, based on the analysis of the characteristics and security requirements of UWSNs, the security threats UWSNs face are discussed in this paper. Then, the security mechanisms of UWSNs are summarized, including encryption, authentication, trust management, intrusion detection, secure location, secure synchronization and secure routing. Finally, the challenges of lack of practical tests and relevant data sets in the security research of UWSNs are discussed, as well as the future research direction of developing security mechanism based on network characteristics.
  • loading
  • [1]
    CUI Junhong, KONG Jiejun, GERLA M, et al. The challenges of building mobile underwater wireless networks for aquatic applications[J]. IEEE Network, 2006, 20(3): 12–18. doi: 10.1109/MNET.2006.1637927
    [2]
    DEMIRORS E, SKLIVANITIS G, SANTAGATI G E, et al. Design of a software-defined underwater acoustic modem with real-time physical layer adaptation capabilities[C]. The International Conference on Underwater Networks & Systems, Rome, Italy, 2014: 25.
    [3]
    YAN Hai, WAN Lei, ZHOU Shengli, et al. DSP based receiver implementation for OFDM acoustic modems[J]. Physical Communication, 2012, 5(1): 22–32. doi: 10.1016/j.phycom.2011.09.001
    [4]
    AKYILDIZ I F and WANG Xudong. A survey on wireless mesh networks[J]. IEEE Communications Magazine, 2005, 43(9): S23–S30. doi: 10.1109/MCOM.2005.1509968
    [5]
    FREITAG L, GRUND M, SINGH S, et al. The WHOI micro-modem: An acoustic communications and navigation system for multiple platforms[C]. OCEANS 2005 MTS/IEEE, Washington, USA, 2005: 1086–1092.
    [6]
    ZHANG Wenbo, HAN Guangjie, WANG Xin, et al. A node location algorithm based on node movement prediction in underwater acoustic sensor networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 3166–3178. doi: 10.1109/TVT.2019.2963406
    [7]
    QARABAQI P and STOJANOVIC M. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels[J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 701–717. doi: 10.1109/JOE.2013.2278787
    [8]
    STOJANOVIC M. On the relationship between capacity and distance in an underwater acoustic communication channel[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2007, 11(4): 34–43. doi: 10.1145/1347364.1347373
    [9]
    STOJANOVIC M and PREISIG J. Underwater acoustic communication channels: Propagation models and statistical characterization[J]. IEEE Communications Magazine, 2009, 47(1): 84–89. doi: 10.1109/MCOM.2009.4752682
    [10]
    LI Baosheng, ZHOU Shengli, STOJANOVIC M, et al. Multicarrier communication over underwater acoustic channels with nonuniform doppler shifts[J]. IEEE Journal of Oceanic Engineering, 2008, 33(2): 198–209. doi: 10.1109/JOE.2008.920471
    [11]
    JIANG Shengming. On securing underwater acoustic networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 729–752. doi: 10.1109/COMST.2018.2864127
    [12]
    WANG Qiu, DAI Hongning, LI Xuran, et al. Eavesdropping attacks in underwater acoustic networks[C]. The 10th International Conference on Information, Communications and Signal Processing (ICICS), Singapore, 2015: 1–5.
    [13]
    ZUBA M, SHI Zhijie, PENG Zheng, et al. Vulnerabilities of underwater acoustic networks to denial-of-service jamming attacks[J]. Security and Communication Networks, 2015, 8(16): 2635–2645. doi: 10.1002/sec.507
    [14]
    SAMIR M, KOWALSKI M, ZHOU Shengli, et al. An experimental study of effective jamming in underwater acoustic links[C]. The 11th International Conference on Mobile Ad Hoc and Sensor Systems, Philadelphia, USA, 2014: 737–742.
    [15]
    GOETZ M, AZAD S, CASARI P, et al. Jamming-resistant multi-path routing for reliable intruder detection in underwater networks[C]. The Sixth ACM International Workshop on Underwater Networks, Seattle, USA, 2011: 10.
    [16]
    CAMPAGNARO F, TRONCHIN D, SIGNORI A, et al. Replay-attack countermeasures for underwater acoustic networks[C]. The Global Oceans 2020: Singapore – U. S. Gulf Coast, Biloxi, USA, 2020: 1–9.
    [17]
    张俊清. 水声网络协议干扰技术研究[D]. [硕士论文], 中国舰船研究院, 2017.

    ZHANG Junqing. Research on protocol interferences against underwater acoustic network[D]. [Master dissertation], China Ship Research and Development Academy, 2017.
    [18]
    ZHANG Junqing, ZHANG Gangqiang, and LIU Junkai. Wormhole attack detecting in underwater acoustic communication networks[C]. 2021 OES China Ocean Acoustics (COA), Harbin, China, 2021: 647–650.
    [19]
    LI Hong, HE Yunhua, CHENG Xiuzhen, et al. Security and privacy in localization for underwater sensor networks[J]. IEEE Communications Magazine, 2015, 53(11): 56–62. doi: 10.1109/MCOM.2015.7321972
    [20]
    SU Zhong, LIN Chuang, REN Fengyuan, et al. Security mechanisms analysis of wireless sensor networks specific routing attacks[C]. 2006 First International Symposium on Pervasive Computing and Applications, Urumqi, China, 2006: 579–584.
    [21]
    LI Xun, HAN Guangjie, QIAN Aihua, et al. Detecting sybil attack based on state information in underwater wireless sensor networks[C]. The 21st International Conference on Software, Telecommunications and Computer Networks, Split, Croatia, 2013: 1–5.
    [22]
    PENG Chunyan, DU Xiujuan, LI Keqin, et al. An ultra-lightweight encryption scheme in underwater acoustic networks[J]. Journal of Sensors, 2016, 2016: 8763528. doi: 10.1155/2016/8763528
    [23]
    刘俊凯, 董阳泽, 张刚强. 隐蔽通信中基于水声信道的密钥生成技术[J]. 应用声学, 2019, 38(4): 681–687. doi: 10.11684/j.issn.1000-310X.2019.04.027

    LIU Junkai, DONG Yangze, and ZHANG Gangqiang. Key generation technology based on underwater acoustic channel estimation in covert communication[J]. Journal of Applied Acoustics, 2019, 38(4): 681–687. doi: 10.11684/j.issn.1000-310X.2019.04.027
    [24]
    DIAMANT R, CASARI P, and TOMASIN S. Cooperative authentication in underwater acoustic sensor networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 954–968. doi: 10.1109/TWC.2018.2886896
    [25]
    DU Jiaxin, HAN Guangjie, LIN Chuan, et al. ITrust: An anomaly-resilient trust model based on isolation forest for underwater acoustic sensor networks[J]. IEEE Transactions on Mobile Computing, 2022, 21(5): 1684–1696. doi: 10.1109/TMC.2020.3028369
    [26]
    JIANG Jinfang, ZHU Xinyu, HAN Guangjie, et al. A dynamic trust evaluation and update mechanism based on C4.5 decision tree in underwater wireless sensor networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 9031–9040. doi: 10.1109/TVT.2020.2999566
    [27]
    HE Yu, HAN Guangjie, JIANG Jinfang, et al. A trust update mechanism based on reinforcement learning in underwater acoustic sensor networks[J]. IEEE Transactions on Mobile Computing, 2022, 21(3): 811–821. doi: 10.1109/TMC.2020.3020313
    [28]
    DAS A P, THAMPI S M, and LLORET J. Anomaly detection in UASN localization based on time series analysis and fuzzy logic[J]. Mobile Networks and Applications, 2020, 25(1): 55–67. doi: 10.1007/s11036-018-1192-y
    [29]
    MOOSAVI H and BUI F M. A game-theoretic framework for robust optimal intrusion detection in wireless sensor networks[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(9): 1367–1379. doi: 10.1109/TIFS.2014.2332816
    [30]
    IOANNOU C, VASSILIOU V, and SERGIOU C. An intrusion detection system for wireless sensor networks[C]. The 24th International Conference on Telecommunications (ICT), Limassol, Cyprus, 2017: 1–5.
    [31]
    SUN Bo, SHAN Xuemei, WU Kui, et al. Anomaly detection based secure in-network aggregation for wireless sensor networks[J]. IEEE Systems Journal, 2013, 7(1): 13–25. doi: 10.1109/JSYST.2012.2223531
    [32]
    BAO Fenye, CHEN I R, CHANG M, et al. Hierarchical trust management for wireless sensor networks and its applications to trust-based routing and intrusion detection[J]. IEEE Transactions on Network and Service Management, 2012, 9(2): 169–183. doi: 10.1109/TCOMM.2012.031912.110179
    [33]
    DARGAHI T, JAVADI H H S, and SHAFIEI H. Securing underwater sensor networks against routing attacks[J]. Wireless Personal Communications, 2017, 96(2): 2585–2602. doi: 10.1007/s11277-017-4313-1
    [34]
    MURGOD T R and SUNDARAM S M. Cluster based detection and reduction techniques to identify wormhole attacks in underwater wireless sensor networks[J]. International Journal of Advanced Computer Science and Applications (IJACSA), 2020, 11(7): 58–63. doi: 10.14569/IJACSA.2020.0110708
    [35]
    HAN Guangjie, LIU Li, JIANG Jinfang, et al. A collaborative secure localization algorithm based on trust model in underwater wireless sensor networks[J]. Sensors, 2016, 16(2): 229. doi: 10.3390/s16020229
    [36]
    DELCOURT M and LE BOUDEC J Y. TDOA source-localization technique robust to time-synchronization attacks[J]. IEEE Transactions on Information Forensics and Security, 2020, 16: 4249–4264. doi: 10.1109/tifs.2020.3001741
    [37]
    XU Bo, LI Shengxin, RAZZAQI A A, et al. A novel measurement information anomaly detection method for cooperative localization[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3516918. doi: 10.1109/TIM.2021.3077981
    [38]
    ZHAO Haiyan, YAN Jing, LUO Xiaoyuan, et al. Privacy preserving solution for the asynchronous localization of underwater sensor networks[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(6): 1511–1527. doi: 10.1109/JAS.2020.1003312
    [39]
    MISRA S, OJHA T, and MADHUSOODHANAN P. SecRET: Secure range-based localization with evidence theory for underwater sensor networks[J]. ACM Transactions on Autonomous and Adaptive Systems, 2020, 15(1): 2. doi: 10.1145/3431390
    [40]
    XU Ming, LIU Guangzhong, ZHU Daqi, et al. A cluster-based secure synchronization protocol for underwater wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2014, 10(4): 398610. doi: 10.1155/2014/398610
    [41]
    HU Fei, MALKAWI Y, KUMAR S, et al. Vertical and horizontal synchronization services with outlier detection in underwater acoustic networks[J]. Wireless Communications and Mobile Computing, 2008, 8(9): 1165–1181. doi: 10.1002/wcm.559
    [42]
    李挺, 冯勇. 无线传感器网络安全路由研究综述[J]. 计算机应用研究, 2012, 29(12): 4412–4419. doi: 10.3969/j.issn.1001-3695.2012.12.003

    LI Ting and FENG Yong. Survey on secure routing research in wireless sensor networks[J]. Application Research of Computers, 2012, 29(12): 4412–4419. doi: 10.3969/j.issn.1001-3695.2012.12.003
    [43]
    MENON V, MIDHUNCHAKKARAVARTHY D, JOHN S, et al. A secure and energy-efficient opportunistic routing protocol with void avoidance for underwater acoustic sensor networks[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2020, 28(4): 2303–2315. doi: 10.3906/elk-2001-51
    [44]
    BHARAMAGOUDRA M R and MANVI S S. Agent-based secure routing for underwater acoustic sensor networks[J]. International Journal of Communication Systems, 2017, 30(13): e3281. doi: 10.1002/dac.3281
    [45]
    SAEED K, KHALIL W, AHMED S, et al. SEECR: Secure energy efficient and cooperative routing protocol for underwater wireless sensor networks[J]. IEEE Access, 2020, 8: 107419–107433. doi: 10.1109/ACCESS.2020.3000863
    [46]
    NGUYEN N T, LE T T T, NGUYEN H H, et al. Energy-efficient clustering multi-hop routing protocol in a UWSN[J]. Sensors, 2021, 21(2): 627. doi: 10.3390/s21020627
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (1825) PDF downloads(430) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return