Citation: | LIU Yancheng, DONG Zhangwei, ZHU Pengli, LIU Siyuan. Unsupervised Underwater Image Enhancement Based on Feature Disentanglement[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3389-3398. doi: 10.11999/JEIT211517 |
[1] |
GHANI A S A and ISA N A M. Enhancement of low quality underwater image through integrated global and local contrast correction[J]. Applied Soft Computing, 2015, 37: 332–344. doi: 10.1016/j.asoc.2015.08.033
|
[2] |
SINGH K, KAPOOR R, and SINHA S K. Enhancement of low exposure images via recursive histogram equalization algorithms[J]. Optik, 2015, 126(20): 2619–2625. doi: 10.1016/j.ijleo.2015.06.060
|
[3] |
ZHANG Shu, WANG Ting, DONG Junyu, et al. Underwater image enhancement via extended multi-scale Retinex[J]. Neurocomputing, 2017, 245: 1–9. doi: 10.1016/j.neucom.2017.03.029
|
[4] |
MERCADO M A, ISHII K, and AHN J. Deep-sea image enhancement using multi-scale retinex with reverse color loss for autonomous underwater vehicles[C]. OCEANS 2017-Anchorage, Anchorage, USA, 2017: 1–6.
|
[5] |
GHANI A S A. Image contrast enhancement using an integration of recursive-overlapped contrast limited adaptive histogram specification and dual-image wavelet fusion for the high visibility of deep underwater image[J]. Ocean Engineering, 2018, 162: 224–238. doi: 10.1016/j.oceaneng.2018.05.027
|
[6] |
LI Chongyi and GUO Jichang. Underwater image enhancement by dehazing and color correction[J]. Journal of Electronic Imaging, 2015, 24(3): 033023. doi: 10.1117/1.JEI.24.3.033023
|
[7] |
JAFFE J S. Computer modeling and the design of optimal underwater imaging systems[J]. IEEE Journal of Oceanic Engineering, 1990, 15(2): 101–111. doi: 10.1109/48.50695
|
[8] |
AKKAYNAK D and TREIBITZ T. A revised underwater image formation model[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6723–6732.
|
[9] |
ANWAR S and LI Chongyi. Diving deeper into underwater image enhancement: A survey[J]. Signal Processing:Image Communication, 2020, 89: 115978. doi: 10.1016/j.image.2020.115978
|
[10] |
SUN Xin, LIU Lipeng, LI Qiong, et al. Deep pixel-to-pixel network for underwater image enhancement and restoration[J]. IET Image Processing, 2018, 13(3): 469–474. doi: 10.1049/iet-ipr.2018.5237
|
[11] |
WANG Yang, ZHANG Jing, CAO Yang, et al. A deep CNN method for underwater image enhancement[C]. 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 2017: 1382–1386.
|
[12] |
LI Chongyi, GUO Chunle, REN Wenqi, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2019, 29: 4376–4389. doi: 10.1109/TIP.2019.2955241
|
[13] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Cambridge, UK, 2014: 2672–2680.
|
[14] |
FABBRI C, ISLAM M J, and SATTAR J. Enhancing underwater imagery using generative adversarial networks[C]. 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 2018: 7159–7165.
|
[15] |
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein GANs[C]. The 31st International Conference on Neural Information Processing Systems, Red Hook, USA, 2017: 5769–5779.
|
[16] |
GUO Yecai, LI Hanyu, and ZHUANG Peixian. Underwater image enhancement using a multiscale dense generative adversarial network[J]. IEEE Journal of Oceanic Engineering, 2020, 45(3): 862–870. doi: 10.1109/JOE.2019.2911447
|
[17] |
LI Jie, SKINNER K A, EUSTICE R M, et al. WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images[J]. IEEE Robotics and Automation Letters, 2017, 3(1): 387–394. doi: 10.1109/LRA.2017.2730363
|
[18] |
LU Jingyu, LI Na, ZHANG Shaoyong, et al. Multi-scale adversarial network for underwater image restoration[J]. Optics & Laser Technology, 2019, 110: 105–113. doi: 10.1016/j.optlastec.2018.05.048
|
[19] |
ZHU Junyan, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. The 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2242–2251.
|
[20] |
ISLAM M J, XIA Youya, and SATTAR J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3227–3234. doi: 10.1109/LRA.2020.2974710
|
[21] |
MIRZA M and OSINDERO S. Conditional generative adversarial nets[J]. arXiv preprint arXiv: 1411.1784, 2014.
|
[22] |
LEE H Y, TSENG H Y, HUANG Jiabin, et al. Diverse image-to-image translation via disentangled representations[C]. The 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 36–52.
|
[23] |
HUANG Xun, LIU Mingyu, BELONGIE S, et al. Multimodal unsupervised image-to-image translation[C]. The 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 179–196.
|
[24] |
LIU Siyuan, THUNG K H, QU Liangqiong, et al. Learning MRI artefact removal with unpaired data[J]. Nature Machine Intelligence, 2021, 3(1): 60–67. doi: 10.1038/s42256-020-00270-2
|
[25] |
LOCATELLO F, BAUER S, LUCIC M, et al. Challenging common assumptions in the unsupervised learning of disentangled representations[C]. The 36th International Conference on Machine Learning, Long Beach, USA, 2019: 4114–4124.
|
[26] |
LI Chuan and WAND M. Precomputed real-time texture synthesis with markovian generative adversarial networks[C]. 14th European Conference on Computer Vision, Amsterdam, Holland, 2016: 702–716.
|
[27] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[28] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. The 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 2017: 936–944.
|
[29] |
HUANG Xun and BELONGIE S. Arbitrary style transfer in real-time with adaptive instance normalization[C]. The 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1510–1519.
|
[30] |
KINGMA D P and WELLING M. Auto-encoding variational bayes[J]. arXiv preprint arXiv: 1312.6114v10, 2013.
|
[31] |
KINGMA D P and BA J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv: 1412.6980v5, 2014.
|
[32] |
PENG Y T and COSMAN P C. Underwater image restoration based on image blurriness and light absorption[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1579–1594. doi: 10.1109/TIP.2017.2663846
|
[33] |
SONG Wei, WANG Yan, HUANG Dongmei, et al. Enhancement of underwater images with statistical model of background light and optimization of transmission map[J]. IEEE Transactions on Broadcasting, 2020, 66(1): 153–169. doi: 10.1109/TBC.2019.2960942
|
[34] |
LI Chongyi, GUO Jichang, and GUO Chunle. Emerging from water: Underwater image color correction based on weakly supervised color transfer[J]. IEEE Signal Processing Letters, 2018, 25(3): 323–327. doi: 10.1109/LSP.2018.2792050
|
[35] |
YANG Miao and SOWMYA A. An underwater color image quality evaluation metric[J]. IEEE Transactions on Image Processing, 2015, 24(12): 6062–6071. doi: 10.1109/TIP.2015.2491020
|
[36] |
PANETTA K, GAO Chen, and AGAIAN S. Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 2016, 41(3): 541–551. doi: 10.1109/JOE.2015.2469915
|