Advanced Search
Volume 44 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
DONG Runze, WANG Buhong, FENG Dengguo, CAO Kunrui, TIAN Jiwei, CHENG Tianhao, DIAO Danyu. Physical Layer Security Transmission Technology of UAV Communication Networks[J]. Journal of Electronics & Information Technology, 2022, 44(3): 803-814. doi: 10.11999/JEIT211509
Citation: DONG Runze, WANG Buhong, FENG Dengguo, CAO Kunrui, TIAN Jiwei, CHENG Tianhao, DIAO Danyu. Physical Layer Security Transmission Technology of UAV Communication Networks[J]. Journal of Electronics & Information Technology, 2022, 44(3): 803-814. doi: 10.11999/JEIT211509

Physical Layer Security Transmission Technology of UAV Communication Networks

doi: 10.11999/JEIT211509
Funds:  The National Natural Science Foundation of China (62101560), The Research Fund of National University of Defense Technology (ZK21-44)
  • Received Date: 2021-12-14
  • Accepted Date: 2022-02-25
  • Rev Recd Date: 2022-02-25
  • Available Online: 2022-02-25
  • Publish Date: 2022-03-28
  • The high mobility of Unmanned Aerial Vehicles (UAVs) can be utilized to meet requirements of the next-generation communication networks such as high coverage and low latency, while due to the broadcast nature of wireless channels and the increasing number of nodes, the problem of secure transmission also needs to be urgently addressed. Since UAVs are resource-constrained aerial platforms, upper-layer encryption techniques can hardly play an equally effective role in UAV communication networks. The essence of physical layer security is to design artificially the communication channel so as to maximize the difference between the legitimate and eavesdropping channel, and the application of physical layer security technology to UAV communication networks can assist to achieve a compromise between confidential transmission and energy efficiency. This paper reviews the current researches on physical layer security transmission technology of UAV communication networks. Specifically, typical physical layer security transmission technologies are firstly introduced in scenarios, and then the challenges in their applications into UAV communication networks are analyzed. Finally, new scenarios, technologies, and methods for the development of physical layer security transmission technologies in UAV communication networks are prospected to provide a new perspective for the research on physical layer security transmission technology of UAV communication networks.
  • loading
  • [1]
    IMT-2020(5G)推进组. 5G无人机应用白皮书[R]. 2018.
    [2]
    王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(4): 15–40. doi: 10.7527/S1000-6893.2019.23732

    WANG Xiangke, LIU Zhihong, CONG Yirui, et al. Miniature fixed-wing UAV swarms: Review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 15–40. doi: 10.7527/S1000-6893.2019.23732
    [3]
    ZHAO Nan, CHENG Fen, YU F R, et al. Caching UAV assisted secure transmission in hyper-dense networks based on interference alignment[J]. IEEE Transactions on Communications, 2018, 66(5): 2281–2294. doi: 10.1109/TCOMM.2018.2792014
    [4]
    MOZAFFARI M, SAAD W, BENNIS M, et al. A tutorial on UAVs for wireless networks: Applications, challenges, and open problems[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2334–2360. doi: 10.1109/COMST.2019.2902862
    [5]
    ZENG Yong, LYU J, and ZHANG Rui. Cellular-connected UAV: Potential, challenges, and promising technologies[J]. IEEE Wireless Communications, 2019, 26(1): 120–127. doi: 10.1109/MWC.2018.1800023
    [6]
    ZENG Yong, WU Qingqing, and ZHANG Rui. Accessing from the sky: A tutorial on UAV communications for 5G and beyond[J]. Proceedings of the IEEE, 2019, 107(12): 2327–2375. doi: 10.1109/JPROC.2019.2952892
    [7]
    SUN Xiaofang, NG D W K, DING Zhiguo, et al. Physical layer security in UAV systems: Challenges and opportunities[J]. IEEE Wireless Communications, 2019, 26(5): 40–47. doi: 10.1109/MWC.001.1900028
    [8]
    WU Qingqing, MEI Weidong, and ZHANG Rui. Safeguarding wireless network with UAVs: A physical layer security perspective[J]. IEEE Wireless Communications, 2019, 26(5): 12–18. doi: 10.1109/MWC.001.1900050
    [9]
    LI Bin, FEI Zesong, ZHANG Yan, et al. Secure UAV communication networks over 5G[J]. IEEE Wireless Communications, 2019, 26(5): 114–120. doi: 10.1109/MWC.2019.1800458
    [10]
    黄开枝, 王少禹, 许晓明, 等. 毫米波下行多用户系统安全混合波束成形算法[J]. 电子与信息学报, 2019, 41(4): 952–958. doi: 10.11999/jeit180713

    HUANG Kaizhi, WANG Shaoyu, XU Xiaoming, et al. Security hybrid beamforming algorithm for millimeter wave downlink multiuser system[J]. Journal of Electronics &Information Technology, 2019, 41(4): 952–958. doi: 10.11999/jeit180713
    [11]
    CAO Kunrui, WANG Buhong, DING Haiyang, et al. Improving physical layer security of uplink NOMA via energy harvesting jammers[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 786–799. doi: 10.1109/TIFS.2020.3023277
    [12]
    CAO Kunrui, WANG Buhong, DING Haiyang, et al. On the security enhancement of uplink NOMA systems with jammer selection[J]. IEEE Transactions on Communications, 2020, 68(9): 5747–5763. doi: 10.1109/TCOMM.2020.3003665
    [13]
    LIN Zhi, LIN Min, ZHU Weiping, et al. Robust secure beamforming for wireless powered cognitive satellite-terrestrial networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 567–580. doi: 10.1109/TCCN.2020.3016096
    [14]
    黄开枝, 金梁, 陈亚军, 等. 无线物理层密钥生成技术发展及新的挑战[J]. 电子与信息学报, 2020, 42(10): 2330–2341. doi: 10.11999/JEIT200002

    HUANG Kaizhi, JIN Liang, CHEN Yajun, et al. Development of wireless physical layer key generation technology and new challenges[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2330–2341. doi: 10.11999/JEIT200002
    [15]
    MAMAGHANI M T and HONG Yi. Joint trajectory and power allocation design for secure artificial noise aided UAV communications[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2850–2855. doi: 10.1109/TVT.2021.3057397
    [16]
    LI Sixian, DUO Bin, DI RENZO M, et al. Robust secure UAV communications with the aid of reconfigurable intelligent surfaces[J]. IEEE Transactions on Wireless Communications, 2021, 20(10): 6402–6417. doi: 10.1109/TWC.2021.3073746
    [17]
    CUI Miao, ZHANG Guangchi, WU Qingqing, et al. Robust trajectory and transmit power design for secure UAV communications[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 9042–9046. doi: 10.1109/TVT.2018.2849644
    [18]
    ZHU Yongxu, ZHENG Gan, and FITCH M. Secrecy rate analysis of UAV-enabled mmWave networks using matérn hardcore point processes[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(7): 1397–1409. doi: 10.1109/JSAC.2018.2825158
    [19]
    YE Jia, ZHANG Chao, LEI Hongjiang, et al. Secure UAV-to-UAV systems with spatially random UAVs[J]. IEEE Wireless Communications Letters, 2019, 8(2): 564–567. doi: 10.1109/LWC.2018.2879842
    [20]
    黄开枝, 金梁, 钟州. 5G物理层安全技术——以通信促安全[J]. 中兴通讯技术, 2019, 25(4): 43–49. doi: 10.12142/ZTETJ.201904008

    HUANG Kaizhi, JIN Liang, and ZHONG Zhou. 5G physical layer security technology: Enhancing security by communication[J]. ZTE Technology Journal, 2019, 25(4): 43–49. doi: 10.12142/ZTETJ.201904008
    [21]
    WYNER A D. The wire-tap channel[J]. The Bell System Technical Journal, 1975, 54(8): 1355–1387. doi: 10.1002/j.1538-7305.1975.tb02040.x
    [22]
    GERBRACHT S, SCHEUNERT C, and JORSWIECK E A. Secrecy outage in MISO systems with partial channel information[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(2): 704–716. doi: 10.1109/TIFS.2011.2181946
    [23]
    GOEL S and NEGI R. Guaranteeing secrecy using artificial noise[J]. IEEE Transactions on Wireless Communications, 2008, 7(6): 2180–2189. doi: 10.1109/TWC.2008.060848
    [24]
    LV Lu, DING Zhiguo, NI Qiang, et al. Secure MISO-NOMA transmission with artificial noise[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 6700–6705. doi: 10.1109/TVT.2018.2811733
    [25]
    HUANG Yuzhen, WANG Jinlong, ZHONG Caijun, et al. Secure transmission in cooperative relaying networks with multiple antennas[J]. IEEE Transactions on Wireless Communications, 2016, 15(10): 6843–6856. doi: 10.1109/TWC.2016.2591940
    [26]
    任品毅, 唐晓. 面向5G的物理层安全技术综述[J]. 北京邮电大学学报, 2018, 41(5): 69–77. doi: 10.13190/j.jbupt.2018-205

    REN Pinyi and TANG Xiao. A review on physical layer security techniques for 5G[J]. Journal of Beijing University of Posts and Telecommunications, 2018, 41(5): 69–77. doi: 10.13190/j.jbupt.2018-205
    [27]
    WANG Ning, WANG P, ALIPOUR-FANID A, et al. Physical-layer security of 5G wireless networks for IoT: Challenges and opportunities[J]. IEEE Internet of Things Journal, 2019, 6(5): 8169–8181. doi: 10.1109/JIOT.2019.2927379
    [28]
    WU Yongpeng, KHISTI A, XIAO Chengshan, et al. A survey of physical layer security techniques for 5G wireless networks and challenges ahead[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(4): 679–695. doi: 10.1109/JSAC.2018.2825560
    [29]
    TIAN Xiaowen, LIU Qian, WANG Zihuan, et al. Secure hybrid beamformers design in mmWave MIMO wiretap systems[J]. IEEE Systems Journal, 2020, 14(1): 548–559. doi: 10.1109/JSYST.2019.2923819
    [30]
    CAO Kunrui, WANG Buhong, DING Haiyang, et al. Secure transmission designs for NOMA systems against internal and external eavesdropping[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2930–2943. doi: 10.1109/TIFS.2020.2980202
    [31]
    LI Xinrui, WANG Wei, ZHANG Miao, et al. Robust secure beamforming for SWIPT-aided relay systems with full-duplex receiver and imperfect CSI[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1867–1878. doi: 10.1109/TVT.2019.2961449
    [32]
    CAO Kunrui, WANG Buhong, DING Haiyang, et al. Achieving reliable and secure communications in wireless-powered NOMA systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1978–1983. doi: 10.1109/TVT.2021.3053093
    [33]
    LI Yupeng, ZHANG Rongqing, ZHANG Jianhua, et al. Cooperative jamming via spectrum sharing for secure UAV communications[J]. IEEE Wireless Communications Letters, 2020, 9(3): 326–330. doi: 10.1109/LWC.2019.2953725
    [34]
    SUN Xiaoli, YANG Weiwei, CAI Yueming, et al. Secure MmWave UAV-enabled SWIPT networks based on random frequency diverse arrays[J]. IEEE Internet of Things Journal, 2021, 8(1): 528–540. doi: 10.1109/JIOT.2020.3005984
    [35]
    WANG Wei, TANG Jie, ZHAO Nan, et al. Joint precoding optimization for secure SWIPT in UAV-Aided NOMA networks[J]. IEEE Transactions on Communications, 2020, 68(8): 5028–5040. doi: 10.1109/TCOMM.2020.2990994
    [36]
    SUN Xiaoli, YANG Weiwei, and CAI Yueming. Secure communication in NOMA- assisted millimeter- wave SWIPT UAV networks[J]. IEEE Internet of Things Journal, 2020, 7(3): 1884–1897. doi: 10.1109/JIOT.2019.2957021
    [37]
    FANG Sisai, CHEN Gaojie, and LI Yonghui. Joint optimization for secure intelligent reflecting surface assisted UAV networks[J]. IEEE Wireless Communications Letters, 2021, 10(2): 276–280. doi: 10.1109/LWC.2020.3027969
    [38]
    GUO Xufeng, CHEN Yuanbin, and WANG Ying. Learning-based robust and secure transmission for reconfigurable intelligent surface aided millimeter wave UAV communications[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1795–1799. doi: 10.1109/LWC.2021.3081464
    [39]
    GAO Ying, TANG Hongying, LI Baoqing, et al. Joint trajectory and power design for UAV-enabled secure communications with No-Fly zone constraints[J]. IEEE Access, 2019, 7: 44459–44470. doi: 10.1109/ACCESS.2019.2908407
    [40]
    XU Dongfang, SUN Yan, NG D W K, et al. Multiuser MISO UAV communications in uncertain environments with No-Fly Zones: Robust trajectory and resource allocation design[J]. IEEE Transactions on Communications, 2020, 68(5): 3153–3172. doi: 10.1109/TCOMM.2020.2970043
    [41]
    CAI Yunlong, CUI Fangyu, SHI Qingjiang, et al. Dual-UAV-enabled secure communications: Joint trajectory design and user scheduling[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 1972–1985. doi: 10.1109/JSAC.2018.2864424
    [42]
    HUA Meng, WANG Yi, WU Qingqing, et al. Energy-efficient cooperative secure transmission in multi-UAV-enabled wireless networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7761–7775. doi: 10.1109/TVT.2019.2924180
    [43]
    GAO Ying, TANG Hongying, LI Baoqing, et al. Securing energy-constrained UAV communications against both internal and external eavesdropping[J]. IEEE Communications Letters, 2021, 25(3): 749–753. doi: 10.1109/LCOMM.2020.3036457
    [44]
    ZHOU Xiaobo, WU Qingqing, YAN Shihao, et al. UAV-enabled secure communications: Joint trajectory and transmit power optimization[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 4069–4073. doi: 10.1109/TVT.2019.2900157
    [45]
    WANG Huiming and ZHANG Xu. UAV secure downlink NOMA transmissions: A secure users oriented perspective[J]. IEEE Transactions on Communications, 2020, 68(9): 5732–5746. doi: 10.1109/TCOMM.2020.3002268
    [46]
    ZHAO Nan, LI Yanxin, ZHANG Shun, et al. Security enhancement for NOMA-UAV networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3994–4005. doi: 10.1109/TVT.2020.2972617
    [47]
    MAMAGHANI M T and HONG Yi. Improving PHY-security of UAV-enabled transmission with wireless energy harvesting: Robust trajectory design and communications resource allocation[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8586–8600. doi: 10.1109/TVT.2020.2998060
    [48]
    CAI Yuanxin, WEI Zhiqiang, LI Ruide, et al. Joint trajectory and resource allocation design for energy-efficient secure UAV communication systems[J]. IEEE Transactions on Communications, 2020, 68(7): 4536–4553. doi: 10.1109/TCOMM.2020.2982152
    [49]
    LI An and ZHANG Wenjing. Mobile jammer-aided secure UAV communications via trajectory design and power control[J]. China Communications, 2018, 15(8): 141–151. doi: 10.1109/CC.2018.8438280
    [50]
    LI Ruide, WEI Zhiqiang, YANG Lei, et al. Resource allocation for secure multi-UAV communication systems with multi-eavesdropper[J]. IEEE Transactions on Communications, 2020, 68(7): 4490–4506. doi: 10.1109/TCOMM.2020.2983040
    [51]
    MIAO Jiansong and ZHENG Ziyuan. Cooperative jamming for secure UAV-enabled mobile relay system[J]. IEEE Access, 2020, 8: 48943–48957. doi: 10.1109/ACCESS.2020.2980242
    [52]
    XIAO Lin, XU Yu, YANG Dingcheng, et al. Secrecy energy efficiency maximization for UAV-enabled mobile relaying[J]. IEEE Transactions on Green Communications and Networking, 2020, 4(1): 180–193. doi: 10.1109/TGCN.2019.2949802
    [53]
    SUN Xiaoli, YANG Weiwei, CAI Yueming, et al. Physical layer security in millimeter wave SWIPT UAV-based relay networks[J]. IEEE Access, 2019, 7: 35851–35862. doi: 10.1109/ACCESS.2019.2904856
    [54]
    XIAO Liang, LU Xiaozhen, XU Dongjin, et al. UAV relay in VANETs against smart jamming with reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4087–4097. doi: 10.1109/TVT.2018.2789466
    [55]
    TUAN V P, SANG N Q, and KONG H Y. Secrecy capacity maximization for untrusted UAV-assisted cooperative communications with wireless information and power transfer[J]. Wireless Networks, 2020, 26(4): 2999–3010. doi: 10.1007/s11276-020-02255-w
    [56]
    SUN Xiaoli, YANG Weiwei, CAI Yueming, et al. Secure transmissions in millimeter wave SWIPT UAV-based relay networks[J]. IEEE Wireless Communications Letters, 2019, 8(3): 785–788. doi: 10.1109/LWC.2019.2892771
    [57]
    BAO Tingnan, YANG Hongchuan, and HASNA M O. Secrecy performance analysis of UAV-assisted relaying communication systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 1122–1126. doi: 10.1109/TVT.2019.2952525
    [58]
    YUAN Quansheng, HU Yongjiang, WANG Changlong, et al. Joint 3D beamforming and trajectory design for UAV-enabled mobile relaying system[J]. IEEE Access, 2019, 7: 26488–26496. doi: 10.1109/ACCESS.2019.2898995
    [59]
    DONG Runze, WANG Buhong, CAO Kunrui, et al. Securing transmission for UAV swarm-enabled communication network[J]. IEEE Systems Journal, To be published.
    [60]
    DONG Runze, WANG Buhong, and CAO Kunrui. Security enhancement of UAV swarm enabled relaying systems with joint beamforming and resource allocation[J]. China Communications, 2021, 18(9): 71–87. doi: 10.23919/JCC.2021.09.007
    [61]
    YAO Jianping and XU Jie. Joint 3D maneuver and power adaptation for secure UAV communication with CoMP reception[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6992–7006. doi: 10.1109/TWC.2020.3007648
    [62]
    WANG Xuanxuan, FENG Wei, CHEN Yunfei, et al. UAV swarm-enabled aerial CoMP: A physical layer security perspective[J]. IEEE Access, 2019, 7: 120901–120916. doi: 10.1109/ACCESS.2019.2936680
    [63]
    LIU Hongwu, YOO S J, and KWAK K S. Opportunistic relaying for low-altitude UAV swarm secure communications with multiple eavesdroppers[J]. Journal of Communications and Networks, 2018, 20(5): 496–508. doi: 10.1109/JCN.2018.000074
    [64]
    XU Yifan, REN Guochun, CHEN Jin, et al. A one-leader multi-follower bayesian-stackelberg game for anti-jamming transmission in UAV communication networks[J]. IEEE Access, 2018, 6: 21697–21709. doi: 10.1109/ACCESS.2018.2828033
    [65]
    WANG Wei, LI Xinrui, ZHANG Miao, et al. Energy-constrained UAV-assisted secure communications with position optimization and cooperative jamming[J]. IEEE Transactions on Communications, 2020, 68(7): 4476–4489. doi: 10.1109/TCOMM.2020.2989462
    [66]
    SUN Guen, LI Na, TAO Xiaofeng, et al. Power allocation in UAV-enabled relaying systems for secure communications[J]. IEEE Access, 2019, 7: 119009–119017. doi: 10.1109/ACCESS.2019.2932780
    [67]
    ZHOU Yifan, ZHOU Fuhui, ZHOU Huilin, et al. Robust trajectory and transmit power optimization for secure UAV-enabled cognitive radio networks[J]. IEEE Transactions on Communications, 2020, 68(7): 4022–4034. doi: 10.1109/TCOMM.2020.2979977
    [68]
    DONG Runze, WANG Buhong, and CAO Kunrui. Deep learning driven 3D robust beamforming for secure communication of UAV systems[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1643–1647. doi: 10.1109/LWC.2021.3075996
    [69]
    WU Huici, WEN Yang, ZHANG Jiazhen, et al. Energy-efficient and secure air-to-ground communication with jittering UAV[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3954–3967. doi: 10.1109/TVT.2020.2971520
    [70]
    ZHOU Yi, YEOH P L, CHEN He, et al. Improving physical layer security via a UAV friendly jammer for unknown eavesdropper location[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 11280–11284. doi: 10.1109/TVT.2018.2868944
    [71]
    SUN Yan, XU Dongfang, NG D W K, et al. Optimal 3D-trajectory design and resource allocation for solar-powered UAV communication systems[J]. IEEE Transactions on Communications, 2019, 67(6): 4281–4298. doi: 10.1109/TCOMM.2019.2900630
    [72]
    CHALLITA U, SAAD W, and BETTSTETTER C. Interference management for cellular-connected UAVs: A deep reinforcement learning approach[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2125–2140. doi: 10.1109/TWC.2019.2900035
    [73]
    郝万明, 孙继威, 孙钢灿, 等. 基于非正交多址接入的移动边缘计算安全节能联合资源分配[J]. 电子与信息学报, 2021, 43(12): 3580–3587. doi: 10.11999/JEIT200872

    HAO Wanming, SUN Jiwei, SUN Gangcan, et al. Secure energy-efficient resource allocation in mobile edge computing based on non-orthogonal multiple access[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3580–3587. doi: 10.11999/JEIT200872
    [74]
    ZHOU Yi, PAN Cunhua, YEOH P L, et al. Secure communications for UAV-enabled mobile edge computing systems[J]. IEEE Transactions on Communications, 2020, 68(1): 376–388. doi: 10.1109/TCOMM.2019.2947921
    [75]
    WANG Wen, TIAN Hui, and NI Wanli. Secrecy performance analysis of IRS-aided UAV relay system[J]. IEEE Wireless Communications Letters, 2021, 10(12): 2693–2697. doi: 10.1109/LWC.2021.3112752
    [76]
    WANG Qian, CHEN Zhi, MEI Weidong, et al. Improving physical layer security using UAV-enabled mobile relaying[J]. IEEE Wireless Communications Letters, 2017, 6(3): 310–313. doi: 10.1109/LWC.2017.2680449
    [77]
    YE Hao, LI G Y, and JUANG B H. Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters, 2018, 7(1): 114–117. doi: 10.1109/LWC.2017.2757490
    [78]
    ZENG Yong, XU Xiaoli, JIN Shi, et al. Simultaneous navigation and radio mapping for cellular-connected UAV with deep reinforcement learning[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4205–4220. doi: 10.1109/TWC.2021.3056573
    [79]
    FENG Keming, WANG Qisheng, LI Xiao, et al. Deep reinforcement learning based intelligent reflecting surface optimization for MISO communication systems[J]. IEEE Wireless Communications Letters, 2020, 9(5): 745–749. doi: 10.1109/LWC.2020.2969167
    [80]
    MISMAR F B, EVANS B L, and ALKHATEEB A. Deep reinforcement learning for 5G networks: Joint beamforming, power control, and interference coordination[J]. IEEE Transactions on Communications, 2020, 68(3): 1581–1592. doi: 10.1109/TCOMM.2019.2961332
    [81]
    ZHANG Shun, LI Muye, JIAN Mengnan, et al. AIRIS: Artificial intelligence enhanced signal processing in reconfigurable intelligent surface communications[J]. China Communications, 2021, 18(7): 158–171. doi: 10.23919/JCC.2021.07.013
    [82]
    ZHANG Yu, MOU Zhiyu, GAO Feifei, et al. UAV-enabled secure communications by multi-agent deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11599–11611. doi: 10.1109/TVT.2020.3014788
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (3002) PDF downloads(588) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return