Citation: | ZHONG Yuanhong, ZHOU Yujie, ZHANG Jing, ZHANG Chenxu. Deep Compressive Sensing Image Reconstruction Network Based on Non-Local Prior[J]. Journal of Electronics & Information Technology, 2023, 45(2): 654-663. doi: 10.11999/JEIT211506 |
[1] |
CANDÈS E J, WAKIN M B, and BOYD S P. Enhancing sparsity by reweighted ℓ1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 877–905. doi: 10.1007/s00041-008-9045-x
|
[2] |
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
|
[3] |
BARANIUK R G, CANDÈS E, NOWAK R, et al. compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 1433–1452. doi: 10.4171/022
|
[4] |
SHI Wuzhen, LIU Shaohui, JIANG Feng, et al. Video compressed sensing using a convolutional neural network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(2): 425–438. doi: 10.1109/TCSVT.2020.2978703
|
[5] |
ROGERS C A and POPESCU D C. Compressed sensing MIMO radar system for extended target detection[J]. IEEE Systems Journal, 2021, 15(1): 1381–1389. doi: 10.1109/JSYST.2020.3000500
|
[6] |
KUMAR P A, GUNASUNDARI R, and AARTHI R. Systematic analysis and review of magnetic resonance imaging (MRI) reconstruction techniques[J]. Current Medical Imaging, 2021, 17(8): 943–955. doi: 10.2174/1573405616666210105125542
|
[7] |
DENG Jun, REN Guanghui, JIN Yansheng, et al. Iterative weighted gradient projection for sparse reconstruction[J]. Information Technology Journal, 2011, 10(7): 1409–1414. doi: 10.3923/itj.2011.1409.1414
|
[8] |
JI Shihao, XUE Ya, and CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346–2356. doi: 10.1109/tsp.2007.914345
|
[9] |
MALLAT S G and ZHANG Zhifeng. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397–3415. doi: 10.1109/78.258082
|
[10] |
QIN Jing, LI Shuang, NEEDELL D, et al. Stochastic greedy algorithms for multiple measurement vectors[J]. Inverse Problems and Imaging, 2021, 15(1): 79–107. doi: 10.3934/ipi.2020066
|
[11] |
LIU Jiahao, WU Qisong, and AMIN M G. Multi-Task Bayesian compressive sensing exploiting signal structures[J]. Signal Processing, 2021, 178: 107804. doi: 10.1016/j.sigpro.2020.107804
|
[12] |
ABDELHAY M A, KORANY N O, and EL-KHAMY S E. Synthesis of uniformly weighted sparse concentric ring arrays based on off-grid compressive sensing framework[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(4): 448–452. doi: 10.1109/LAWP.2021.3052174
|
[13] |
GONG Yu, XIAO Shaoqiu, ZHENG Yu, et al. Synthesis of multiple-pattern planar arrays by the multitask Bayesian compressive sensing[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(8): 1587–1591. doi: 10.1109/LAWP.2021.3091613
|
[14] |
DONG Weisheng, SHI Guangming, LI Xin, et al. Compressive sensing via nonlocal low-rank regularization[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3618–3632. doi: 10.1109/TIP.2014.2329449
|
[15] |
FRIEDLAND S, LI Qun, and SCHONFELD D. Compressive sensing of sparse tensors[J]. IEEE Transactions on Image Processing, 2014, 23(10): 4438–4447. doi: 10.1109/TIP.2014.2348796
|
[16] |
ZHANG Jian, ZHAO Debin, and GAO Wen. Group-based sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3336–3351. doi: 10.1109/TIP.2014.2323127
|
[17] |
MOUSAVI A, PATEL A B, and BARANIUK R G. A deep learning approach to structured signal recovery[C]. 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, USA, 2015: 1336–1343.
|
[18] |
KULKARNI K, LOHIT S, TURAGA P, et al. ReconNet: Non-iterative reconstruction of images from compressively sensed measurements[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 449–458.
|
[19] |
YAO Hantao, DAI Feng, ZHANG Shiliang, et al. DR2-Net: Deep residual reconstruction network for image compressive sensing[J]. Neurocomputing, 2019, 359: 483–493. doi: 10.1016/j.neucom.2019.05.006
|
[20] |
SHI Wuzhen, JIANG Feng, LIU Shaohui, et al. Image compressed sensing using convolutional neural network[J]. IEEE Transactions on Image Processing, 2020, 29: 375–388. doi: 10.1109/TIP.2019.2928136
|
[21] |
SHI Wuzhen, JIANG Feng, LIU Shaohui, et al. Scalable convolutional neural network for image compressed sensing[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 12282–12291.
|
[22] |
ZHANG Jian and GHANEM B. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1828–1837.
|
[23] |
ZHANG Jian, ZHAO Chen, and GAO Wen. Optimization-inspired compact deep compressive sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(4): 765–774. doi: 10.1109/JSTSP.2020.2977507
|
[24] |
CHEN Chen, TRAMEL E W, and FOWLER J E. Compressed-sensing recovery of images and video using multihypothesis predictions[C]. 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, USA, 2011: 1193–1198.
|
[25] |
MUN S and FOWLER J E. Residual reconstruction for block-based compressed sensing of video[C]. 2011 Data Compression Conference, Snowbird, USA, 2011: 183–192.
|
[26] |
唐述, 谢显中. 多正则化混合约束的模糊图像盲复原方法[J]. 电子与信息学报, 2015, 37(4): 770–776. doi: 10.11999/JEIT140949
TANG Shu and XIE Xianzhong. Multi-regularization hybrid constraints method for blind image restoration[J]. Journal of Electronics &Information Technology, 2015, 37(4): 770–776. doi: 10.11999/JEIT140949
|
[27] |
SHI Wenzhe, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 1874–1883.
|
[28] |
WANG Xiaolong, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake, USA, 2018: 7794–7803.
|
[29] |
BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]. British Machine Vision Conference, Surrey, UK, 2012: 135.
|
[30] |
MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]. Eighth IEEE International Conference on Computer Vision. ICCV 2001, Vancouver, Canada, 2001: 416–423
|