Citation: | LI Hai, XIE Ruijie, XIE Lingli, MENG Fanwang. Low-altitude Wind Shear Wind Speed Estimation Method Based on GAMP-STAP in Complex Terrain Environment[J]. Journal of Electronics & Information Technology, 2023, 45(2): 576-584. doi: 10.11999/JEIT211500 |
[1] |
DESHPANDE M D and STATON L. Determination of windspeed within a weather storm using airborne Doppler radar[C]. IEEE Proceedings of the SOUTHEASTCON’91, Williamsburg, USA, 1991: 508–519.
|
[2] |
中国民用航空局. 《新时代民航强国建设行动纲要》出台[EB/OL]. http://www.caac.gov.cn/XWZX/MHYW/201812/t20181211_193411.html, 2018.
Civil Aviation Administration of China. Action plan for building a civil aviation power in the new era[EB/OL]. http://www.caac.gov.cn/XWZX/MHYW/201812/t20181211_193411.html, 2018.
|
[3] |
WARD J. Space-time adaptive processing for airborne radar[C]. Proceedings of 1995 International Conference on Acoustics, Speech, and Signal Processing, Detroit, USA, 1995.
|
[4] |
KLEMM R. Space-time adaptive processing: principles and applications [Book Review][J]. Electronics & Communication Engineering Journal, 1999, 11(4): 172.
|
[5] |
REED I S, MALLETT J D, and BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 853–863. doi: 10.1109/TAES.1974.307893
|
[6] |
李海, 刘志鑫, 王杰, 等. 基于DDD-GMB的低空风切变风速估计方法[J]. 信号处理, 2020, 36(1): 67–76. doi: 10.16798/j.issn.1003-0530.2020.01.009
LI Hai, LIU Zhixin, WANG Jie, et al. Low-altitude windshear wind speed estimation method based on DDD-GMB[J]. Journal of Signal Processing, 2020, 36(1): 67–76. doi: 10.16798/j.issn.1003-0530.2020.01.009
|
[7] |
PECKHAM C D, HAIMOVICH A M, AYOUB T F, et al. Reduced-rank STAP performance analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 664–676. doi: 10.1109/7.845257
|
[8] |
李海, 周盟, 陈筱浅, 等. 基于多通道联合自适应处理的微下击暴流中心风速估计方法[J]. 电子与信息学报, 2017, 39(7): 1619–1625. doi: 10.11999/JEIT161094
LI Hai, ZHOU Meng, CHEN Xiaoqian, et al. Multiple Doppler channels joint adaptive processing based central wind speed estimation for microburst[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1619–1625. doi: 10.11999/JEIT161094
|
[9] |
KANG Naixin, SHANG Zheran, and DU Qinglei. Knowledge-aided structured covariance matrix estimator applied for radar sensor signal detection[J]. Sensors, 2019, 19(3): 664. doi: 10.3390/s19030664
|
[10] |
苏昱煜. 机载雷达自适应干扰抑制和基于先验知识的空时信号处理[D]. [博士论文], 西安电子科技大学, 2020.
SU Yuyu. Adaptive interference suppression and knowledge aided space time signal processing for airborne radar[D]. [Ph. D. dissertation], Xidian University, 2020.
|
[11] |
段克清, 袁华东, 许红, 等. 稀疏恢复空时自适应处理技术研究综述[J]. 电子学报, 2019, 47(3): 748–756. doi: 10.3969/j.issn.0372-2112.2019.03.033
DUAN Keqing, YUAN Huadong, XU Hong, et al. An overview on sparse recovery space-time adaptive processing technique[J]. Acta Electronica Sinica, 2019, 47(3): 748–756. doi: 10.3969/j.issn.0372-2112.2019.03.033
|
[12] |
阳召成. 基于稀疏性的空时自适应处理理论和方法[D]. [博士论文], 国防科学技术大学, 2013.
YANG Zhaocheng. Theory and methods of sparsity-based space-time adaptive processing[D]. [Ph. D. dissertation], National University of Defense Technology, 2013.
|
[13] |
王千里. 基于自适应网格的稀疏信号处理方法研究[D]. [博士论文], 电子科技大学, 2020.
WANG Qianli. Research on sparse signal processing based on adaptive grid[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2020.
|
[14] |
BAI Gatai, TAO Ran, ZHAO Juan, et al. Parameter-searched OMP method for eliminating basis mismatch in space-time spectrum estimation[J]. Signal Processing, 2017, 138: 11–15. doi: 10.1016/j.sigpro.2017.03.003
|
[15] |
DUAN Keqing, XU Hong, YUAN Huadong, et al. Three-dimensional sparse recovery space-time adaptive processing for airborne radar[J]. The Journal of Engineering, 2019, 2019(19): 5478–5482. doi: 10.1049/joe.2019.0343
|
[16] |
ZHU Jiang, ZHANG Qi, MENG Xiangming, et al. Vector approximate message passing algorithm for compressed sensing with structured matrix perturbation[J]. Signal Processing, 2020, 166: 107248. doi: 10.1016/j.sigpro.2019.107248
|
[17] |
项璟. 广义近似消息传递算法的研究与应用[D]. [硕士论文], 燕山大学, 2018.
XIANG Jing. Research and application of generalized approximate message passing algorithm[D]. [Master dissertation], Yanshan University, 2018.
|
[18] |
VILA J P and SCHNITER P. Expectation-maximization Gaussian-mixture approximate message passing[J]. IEEE Transactions on Signal Processing, 2013, 61(19): 4658–4672. doi: 10.1109/TSP.2013.2272287
|
[19] |
LI Hai, WANG Jie, FAN Yi, et al. High-fidelity inhomogeneous ground clutter simulation of airborne phased array PD radar aided by digital elevation model and digital land classification data[J]. Sensors, 2018, 18(9): 2925. doi: 10.3390/s18092925
|
[20] |
BRINGI V N and CHANDRASEKAR V. Polarimetric Doppler Weather Radar: Principles and Applications[M]. Cambridge: Cambridge University Press, 2005: 1–100.
|
[21] |
李海, 宋迪, 程伟杰, 等. 回波功率筛选与数字地表分类数据辅助的低空风切变风速估计方法[J]. 电子与信息学报, 2021, 43(8): 2286–2291. doi: 10.11999/JEIT190894
LI Hai, SONG Di, CHENG Weijie, et al. Echo power screening and digital land classification data-assisted wind speed estimation of low-altitude wind-shear[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2286–2291. doi: 10.11999/JEIT190894
|
[22] |
DUAN Keqing, LIU Weijian, DUAN Guangqing, et al. Off-grid effects mitigation exploiting knowledge of the clutter ridge for sparse recovery STAP[J]. IET Radar, Sonar & Navigation, 2018, 12(5): 557–564. doi: 10.1049/iet-rsn.2017.0425
|
[23] |
RIEDL M and POTTER L C. Knowledge-aided Bayesian space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1850–1861. doi: 10.1109/TAES.2018.2805141
|
[24] |
RANGAN S. Generalized approximate message passing for estimation with random linear mixing[C]. 2011 IEEE International Symposium on Information Theory Proceedings, St. Petersburg, Russia, 2011.
|
[25] |
高乐, 毕东杰, 彭礼彪, 等. 基于GAMP的近场毫米波成像快速算法[J]. 电子科技大学学报, 2019, 48(2): 168–173. doi: 10.3969/j.issn.1001-0548.2019.02.002
GAO Le, BI Dongjie, PENG Libiao, et al. Fast near-field millimeter-wave imaging algorithm via generalized approximate message passing[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(2): 168–173. doi: 10.3969/j.issn.1001-0548.2019.02.002
|