Advanced Search
Volume 45 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
SHUI Penglang, TIAN Chao, FENG Tian. Outlier-robust Tri-percentile Parameter Estimation Method of Compound-Gaussian Clutter with Inverse Gaussian Textures[J]. Journal of Electronics & Information Technology, 2023, 45(2): 542-549. doi: 10.11999/JEIT211483
Citation: SHUI Penglang, TIAN Chao, FENG Tian. Outlier-robust Tri-percentile Parameter Estimation Method of Compound-Gaussian Clutter with Inverse Gaussian Textures[J]. Journal of Electronics & Information Technology, 2023, 45(2): 542-549. doi: 10.11999/JEIT211483

Outlier-robust Tri-percentile Parameter Estimation Method of Compound-Gaussian Clutter with Inverse Gaussian Textures

doi: 10.11999/JEIT211483
Funds:  The National Natural Science Foundation of China (62071346)
  • Received Date: 2021-12-10
  • Accepted Date: 2022-06-01
  • Rev Recd Date: 2022-05-16
  • Available Online: 2022-06-09
  • Publish Date: 2023-02-07
  • Compound-Gaussian distributions with Inverse Gaussian textures (IG-CG distributions) are commonly-used model to characterize high-resolution sea clutter and its parameter estimation plays an important role in adaptive target detection in high-resolution maritime radars. In parameter estimation, sea clutter data unavoidably contain a few of outliers from radar returns of sea-surface objects and reefs and in this case outlier-robust bi-percentile estimators are one of effective methods. This paper proposes an outlier-robust Tripercentile (Tri-per) estimation method, which is an improved version of the bi-percentile estimators. The improvement is made in two aspects. The positions of two sample percentiles are optimized to improve the estimation precision of the inverse shape parameter and the third sample percentile is introduced and its position is optimized to improve the estimation precision of the scale parameter. At last, simulated and measured data are used to verify the effectiveness and robustness of the proposed tri-percentile estimators.
  • loading
  • [1]
    OLLILA E, TYLER D E, KOIVUNEN V, et al. Compound-Gaussian clutter modeling with an inverse Gaussian texture distribution[J]. IEEE Signal Processing Letters, 2012, 19(12): 876–879. doi: 10.1109/LSP.2012.2221698
    [2]
    YU Han, SHUI Penglang, and HUANG Yuting. Low-order moment-based estimation of shape parameter of CGIG clutter model[J]. Electronics Letters, 2016, 52(18): 1561–1563. doi: 10.1049/el.2016.2248
    [3]
    WANG Zhihang, HE Zishu, HE Qin, et al. Adaptive CFAR detectors for mismatched signal in compound Gaussian sea clutter with inverse Gaussian texture[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3502705. doi: 10.1109/LGRS.2020.3047390
    [4]
    GRIFFITHS H. Sea clutter: Scattering, the K distribution and radar performance (Ward, K. D., et al.; 2006) [book review][J]. IEEE Aerospace and Electronic Systems Magazine, 2007, 22(1): 28. doi: 10.1109/MAES.2007.327513
    [5]
    张坤, 水鹏朗, 王光辉. 相参雷达K分布海杂波背景下非相干积累恒虚警检测方法[J]. 电子与信息学报, 2020, 42(7): 1627–1635. doi: 10.11999/JEIT190441

    ZHANG Kun, SHUI Penglang, and WANG Guanghui. Non-coherent integration constant false alarm rate detectors against K-distributed sea clutter for coherent radar systems[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1627–1635. doi: 10.11999/JEIT190441
    [6]
    BALLERI A, NEHORAI A, and WANG Jian. Maximum likelihood estimation for compound-gaussian clutter with inverse gamma texture[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 775–779. doi: 10.1109/TAES.2007.4285370
    [7]
    CHALABI I and MEZACHE A. Estimators of compound Gaussian clutter with log-normal texture[J]. Remote Sensing Letters, 2019, 10(7): 709–716. doi: 10.1080/2150704X.2019.1601275
    [8]
    XUE Jian, XU Shuwen, and SHUI Penglang. Near-optimum coherent CFAR detection of radar targets in compound-Gaussian clutter with inverse Gaussian texture[J]. Signal Processing, 2020, 166: 107236. doi: 10.1016/j.sigpro.2019.07.029
    [9]
    XU Shuwen, WANG Zhexiang, BAI Xiaohui, et al. Optimum and near-optimum coherent CFAR detection of radar targets in compound-Gaussian clutter with generalized inverse Gaussian texture[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 1692–1706. doi: 10.1109/TAES.2021.3120045
    [10]
    MEZACHE A, SOLTANI F, SAHED M, et al. Model for non-rayleigh clutter amplitudes using compound inverse Gaussian distribution: An experimental analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 142–153. doi: 10.1109/TAES.2014.130332
    [11]
    HUANG Penghui, ZOU Zihao, XIA Xianggen, et al. A statistical model based on modified generalized-K distribution for sea clutter[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8015805. doi: 10.1109/LGRS.2021.3093975
    [12]
    SHUI Penglang, SHI Lixiang, YU Han, et al. Iterative maximum likelihood and outlier-robust bipercentile estimation of parameters of compound-Gaussian clutter with inverse Gaussian texture[J]. IEEE Signal Processing Letters, 2016, 23(11): 1572–1576. doi: 10.1109/LSP.2016.2605129
    [13]
    YU Han, SHUI Penglang, and LU Kai. Outlier-robust tri-percentile parameter estimation of K-distributions[J]. Signal Processing, 2021, 181: 107906. doi: 10.1016/j.sigpro.2020.107906
    [14]
    MIAO Yu, CHEN Yingxia, and XU Shoufang. Asymptotic properties of the deviation between order statistics and p-quantile[J]. Communications in Statistics-Theory and Methods, 2010, 40(1): 8–14. doi: 10.1080/03610920903350523
    [15]
    [16]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (607) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return