Citation: | SHUI Penglang, TIAN Chao, FENG Tian. Outlier-robust Tri-percentile Parameter Estimation Method of Compound-Gaussian Clutter with Inverse Gaussian Textures[J]. Journal of Electronics & Information Technology, 2023, 45(2): 542-549. doi: 10.11999/JEIT211483 |
[1] |
OLLILA E, TYLER D E, KOIVUNEN V, et al. Compound-Gaussian clutter modeling with an inverse Gaussian texture distribution[J]. IEEE Signal Processing Letters, 2012, 19(12): 876–879. doi: 10.1109/LSP.2012.2221698
|
[2] |
YU Han, SHUI Penglang, and HUANG Yuting. Low-order moment-based estimation of shape parameter of CGIG clutter model[J]. Electronics Letters, 2016, 52(18): 1561–1563. doi: 10.1049/el.2016.2248
|
[3] |
WANG Zhihang, HE Zishu, HE Qin, et al. Adaptive CFAR detectors for mismatched signal in compound Gaussian sea clutter with inverse Gaussian texture[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3502705. doi: 10.1109/LGRS.2020.3047390
|
[4] |
GRIFFITHS H. Sea clutter: Scattering, the K distribution and radar performance (Ward, K. D., et al.; 2006) [book review][J]. IEEE Aerospace and Electronic Systems Magazine, 2007, 22(1): 28. doi: 10.1109/MAES.2007.327513
|
[5] |
张坤, 水鹏朗, 王光辉. 相参雷达K分布海杂波背景下非相干积累恒虚警检测方法[J]. 电子与信息学报, 2020, 42(7): 1627–1635. doi: 10.11999/JEIT190441
ZHANG Kun, SHUI Penglang, and WANG Guanghui. Non-coherent integration constant false alarm rate detectors against K-distributed sea clutter for coherent radar systems[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1627–1635. doi: 10.11999/JEIT190441
|
[6] |
BALLERI A, NEHORAI A, and WANG Jian. Maximum likelihood estimation for compound-gaussian clutter with inverse gamma texture[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 775–779. doi: 10.1109/TAES.2007.4285370
|
[7] |
CHALABI I and MEZACHE A. Estimators of compound Gaussian clutter with log-normal texture[J]. Remote Sensing Letters, 2019, 10(7): 709–716. doi: 10.1080/2150704X.2019.1601275
|
[8] |
XUE Jian, XU Shuwen, and SHUI Penglang. Near-optimum coherent CFAR detection of radar targets in compound-Gaussian clutter with inverse Gaussian texture[J]. Signal Processing, 2020, 166: 107236. doi: 10.1016/j.sigpro.2019.07.029
|
[9] |
XU Shuwen, WANG Zhexiang, BAI Xiaohui, et al. Optimum and near-optimum coherent CFAR detection of radar targets in compound-Gaussian clutter with generalized inverse Gaussian texture[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 1692–1706. doi: 10.1109/TAES.2021.3120045
|
[10] |
MEZACHE A, SOLTANI F, SAHED M, et al. Model for non-rayleigh clutter amplitudes using compound inverse Gaussian distribution: An experimental analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 142–153. doi: 10.1109/TAES.2014.130332
|
[11] |
HUANG Penghui, ZOU Zihao, XIA Xianggen, et al. A statistical model based on modified generalized-K distribution for sea clutter[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8015805. doi: 10.1109/LGRS.2021.3093975
|
[12] |
SHUI Penglang, SHI Lixiang, YU Han, et al. Iterative maximum likelihood and outlier-robust bipercentile estimation of parameters of compound-Gaussian clutter with inverse Gaussian texture[J]. IEEE Signal Processing Letters, 2016, 23(11): 1572–1576. doi: 10.1109/LSP.2016.2605129
|
[13] |
YU Han, SHUI Penglang, and LU Kai. Outlier-robust tri-percentile parameter estimation of K-distributions[J]. Signal Processing, 2021, 181: 107906. doi: 10.1016/j.sigpro.2020.107906
|
[14] |
MIAO Yu, CHEN Yingxia, and XU Shoufang. Asymptotic properties of the deviation between order statistics and p-quantile[J]. Communications in Statistics-Theory and Methods, 2010, 40(1): 8–14. doi: 10.1080/03610920903350523
|
[15] | |
[16] |