Citation: | FENG Xiaoxin, WANG Zijian, WU Qi. Semi-supervised Learning Remote Sensing Image Retrieval Method Based on Triplet Sampling Graph Convolutional Network[J]. Journal of Electronics & Information Technology, 2023, 45(2): 644-653. doi: 10.11999/JEIT211478 |
[1] |
SUMBUL G, KANG Jian, and DEMIR B. Deep learning for image search and retrieval in large remote sensing archives[M]. CAMPS-VALLS G, TUIA D, ZHU Xiaoxiang, et al. Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science, and Geosciences. Hoboken: John Wiley & Sons Ltd, 2021: 150–160.
|
[2] |
YE Famao, XIAO Hui, ZHAO Xuqing, et al. Remote sensing image retrieval using convolutional neural network features and weighted distance[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(10): 1535–1539. doi: 10.1109/LGRS.2018.2847303
|
[3] |
ROY S, SANGINETO E, DEMIR B, et al. Metric-learning-based deep hashing network for content-based retrieval of remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(2): 226–230. doi: 10.1109/LGRS.2020.2974629
|
[4] |
SCHROFF F, KALENICHENKO D, and PHILBIN J. FaceNet: A unified embedding for face recognition and clustering[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 815–823.
|
[5] |
ZHU Panpan, TAN Yumin, ZHANG Liqiang, et al. Deep learning for multilabel remote sensing image annotation with dual-level semantic concepts[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4047–4060. doi: 10.1109/TGRS.2019.2960466
|
[6] |
ZHANG Shizhou, ZHANG Qi, WEI Xing, et al. Person re-identification with triplet focal loss[J]. IEEE Access, 2018, 6: 78092–78099. doi: 10.1109/ACCESS.2018.2884743
|
[7] |
KIM S, SEO M, LAPTEV I, et al. Deep metric learning beyond binary supervision[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 2283–2292.
|
[8] |
WANG Xun, HAN Xintong, HUANG Weilin, et al. Multi-similarity loss with general pair weighting for deep metric learning[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5017–5025.
|
[9] |
WANG Xinshao, HUA Yang, KODIROV E, et al. Ranked list loss for deep metric learning[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5202–5211.
|
[10] |
ZHANG Maoding, CHENG Qimin, LUO Fang, et al. A triplet nonlocal neural network with dual-anchor triplet loss for high-resolution remote sensing image retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2711–2723. doi: 10.1109/JSTARS.2021.3058691
|
[11] |
WU Chaoyuan, MANMATHA R, SMOLA A J, et al. Sampling matters in deep embedding learning[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2859–2867.
|
[12] |
ZHANG Dingyi, LI Yingming, and ZHANG Zhongfei. Deep metric learning with spherical embedding[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1576.
|
[13] |
XUAN Hong, STYLIANOU A, and PLESS R. Improved embeddings with easy positive triplet mining[C]. Proceedings of 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass, USA, 2020: 2463–2471.
|
[14] |
YUAN Yuhui, YANG Kuiyuan, and ZHANG Chao. Hard-aware deeply cascaded embedding[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 814–823.
|
[15] |
YANG Xun, ZHOU Peicheng, and WANG Meng. Person reidentification via structural deep metric learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(10): 2987–2998. doi: 10.1109/TNNLS.2018.2861991
|
[16] |
GE Weifeng, HUANG Weilin, DONG Dengke, et al. Deep metric learning with hierarchical triplet loss[C]. Proceedings of European Conference on Computer Vision, Munich, Germany, 2018: 272–288.
|
[17] |
CAO Rui, ZHANG Qian, ZHU Jiasong, et al. Enhancing remote sensing image retrieval using a triplet deep metric learning network[J]. International Journal of Remote Sensing, 2020, 41(2): 740–751. doi: 10.1080/2150704X.2019.1647368
|
[18] |
JIANG Bo, ZHANG Ziyan, LIN Doudou, et al. Semi-supervised learning with graph learning-convolutional networks[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 11305–11312.
|
[19] |
DUVENAUD D, MACLAURIN D, AGUILERA-IPARRAGUIRRE J, et al. Convolutional networks on graphs for learning molecular fingerprints[C]. Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 2224–2232.
|
[20] |
BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[C]. Proceedings of the 2nd International Conference on Learning Representations, Banff, Canada, 2013.
|
[21] |
KIPF T N and WELLING M. Semi-supervised classification with graph convolutional networks[C]. Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 2017.
|
[22] |
KANG Jian, FERNANDEZ-BELTRAN R, HONG Danfeng, et al. Graph relation network: Modeling relations between scenes for multilabel remote-sensing image classification and retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 4355–4369. doi: 10.1109/TGRS.2020.3016020
|
[23] |
CHAUDHURI U, BANERJEE B, and BHATTACHARYA A. Siamese graph convolutional network for content based remote sensing image retrieval[J]. Computer Vision and Image Understanding, 2019, 184: 22–30. doi: 10.1016/j.cviu.2019.04.004
|
[24] |
RIBA P, FISCHER A, LLADÓS J, et al. Learning graph edit distance by graph neural networks[J]. Pattern Recognition, 2021, 120: 108132. doi: 10.1016/j.patcog.2021.108132
|
[25] |
XIA Guisong, HU Jingwen, HU Fan, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965–3981. doi: 10.1109/TGRS.2017.2685945
|
[26] |
CHENG Gong, HAN Junwei, and LU Xiaoqiang. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865–1883. doi: 10.1109/JPROC.2017.2675998
|
[27] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[28] |
CHENG Gong, YANG Ceyuan, YAO Xiwen, et al. When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2811–2821. doi: 10.1109/TGRS.2017.2783902
|
[29] |
KANG Jian, FERNANDEZ-BELTRAN R, YE Zhen, et al. Deep metric learning based on scalable neighborhood components for remote sensing scene characterization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8905–8918. doi: 10.1109/TGRS.2020.2991657
|
[30] |
KANG Jian, FERNÁNDEZ-BELTRÁN R, YE Zhen, et al. High-rankness regularized semi-supervised deep metric learning for remote sensing imagery[J]. Remote Sensing, 2020, 12(16): 2603. doi: 10.3390/rs12162603
|