Citation: | LIANG Hongyan, CHEN Deyong, WANG Junbo, CHEN Jian. Methods for Measuring Single-Cell Structural and Electrical Properties[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2966-2976. doi: 10.11999/JEIT211459 |
[1] |
HAN Xiaojun, BERKEL C, GWYER J, et al. Microfluidic lysis of human blood for leukocyte analysis using single cell impedance cytometry[J]. Analytical Chemistry, 2012, 84(2): 1070–1075. doi: 10.1021/ac202700x
|
[2] |
DU E, HA S, DIEZ-SILVA M, et al. Electric impedance microflow cytometry for characterization of cell disease states[J]. Lab on A Chip, 2013, 13(19): 3903–3909. doi: 10.1039/c3lc50540e
|
[3] |
NWANKIRE C E, VENKATANARAYANAN A, GLENNON T, et al. Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform[J]. Biosensors and Bioelectronics, 2015, 68: 382–389. doi: 10.1016/j.bios.2014.12.049
|
[4] |
TRAN A K, SAPKOTA A, WEN Jianming, et al. Linear relationship between cytoplasm resistance and hemoglobin in red blood cell hemolysis by electrical impedance spectroscopy & eight-parameter equivalent circuit[J]. Biosensors and Bioelectronics, 2018, 119: 103–109. doi: 10.1016/j.bios.2018.08.012
|
[5] |
RAILLON C, CHE J, THILL S, et al. Toward microfluidic label-free isolation and enumeration of circulating tumor cells from blood samples[J]. Cytometry Part A, 2019, 95(10): 1085–1095. doi: 10.1002/cyto.a.23868
|
[6] |
GRIFFITHS T M, PAGE L, WEYRICH A S, et al. Platelet electrical resistance for measuring platelet activation and adhesion in human health and disease[J]. Thrombosis Research, 2021, 198: 204–209. doi: 10.1016/j.thromres.2020.12.012
|
[7] |
LIU Jia, QIANG Yuhao, and DU E. Dielectric spectroscopy of red blood cells in sickle cell disease[J]. Electrophoresis, 2021, 42(5): 667–675. doi: 10.1002/elps.202000143
|
[8] |
MAN Yuncheng, MAJI D, AN Ran, et al. Microfluidic electrical impedance assessment of red blood cell-mediated microvascular occlusion[J]. Lab on A Chip, 2021, 21(6): 1036–1048. doi: 10.1039/d0lc01133a
|
[9] |
COLEY H M, LABEED F H, THOMAS H, et al. Biophysical characterization of MDR breast cancer cell lines reveals the cytoplasm is critical in determining drug sensitivity[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2007, 1770(4): 601–608. doi: 10.1016/j.bbagen.2006.12.002
|
[10] |
LIANG X, GRAHAM K A, JOHANNESSEN A C, et al. Human oral cancer cells with increasing tumorigenic abilities exhibit higher effective membrane capacitance[J]. Integrative Biology, 2014, 6(5): 545–554. doi: 10.1039/C3IB40255J
|
[11] |
ZHAO Yang, ZHAO Xiaoting, CHEN Deyong, et al. Tumor cell characterization and classification based on cellular specific membrane capacitance and cytoplasm conductivity[J]. Biosensors and Bioelectronics, 2014, 57: 245–253. doi: 10.1016/j.bios.2014.02.026
|
[12] |
KUMAR R T K, LIU Shanshan, MINNA J D, et al. Monitoring drug induced apoptosis and treatment sensitivity in non-small cell lung carcinoma using dielectrophoresis[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2016, 1860(9): 1877–1883. doi: 10.1016/j.bbagen.2016.05.039
|
[13] |
TANG Wenlai, TANG Dezhi, NI Zhonghua, et al. Microfluidic impedance cytometer with inertial focusing and liquid electrodes for high-throughput cell counting and discrimination[J]. Analytical Chemistry, 2017, 89(5): 3154–3161. doi: 10.1021/acs.analchem.6b04959
|
[14] |
SANO M, KAJI N, ROWAT A C, et al. Microfluidic mechanotyping of a single cell with two consecutive constrictions of different sizes and an electrical detection system[J]. Analytical Chemistry, 2019, 91(20): 12890–12899. doi: 10.1021/acs.analchem.9b02818
|
[15] |
DABIGHI A and TOGHRAIE D. A new microfluidic device for separating circulating tumor cells based on their physical properties by using electrophoresis and dielectrophoresis forces within an electrical field[J]. Computer Methods and Programs in Biomedicine, 2020, 185: 105147. doi: 10.1016/j.cmpb.2019.105147
|
[16] |
HOSSAIN S. Malignant cell characterization via mathematical analysis of bio impedance and optical properties[J]. Electromagnetic Biology and Medicine, 2021, 40(1): 65–83. doi: 10.1080/15368378.2020.1850471
|
[17] |
SONG Hongjun, WANG Yi, ROSANO J M, et al. A microfluidic impedance flow cytometer for identification of differentiation state of stem cells[J]. Lab on A Chip, 2013, 13(12): 2300–2310. doi: 10.1039/c3lc41321g
|
[18] |
ZHOU Ying, BASU S, LAUE E, et al. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device[J]. Biosensors and Bioelectronics, 2016, 81: 249–258. doi: 10.1016/j.bios.2016.02.069
|
[19] |
XAVIER M, DE ANDRÉS M C D, SPENCER D, et al. Size and dielectric properties of skeletal stem cells change critically after enrichment and expansion from human bone marrow: Consequences for microfluidic cell sorting[J]. Journal of the Royal Society Interface, 2017, 14(133): 20170233. doi: 10.1098/rsif.2017.0233
|
[20] |
EL-BATTRAWY I, ZHAO Zhilan, LAN Huan, et al. Estradiol protection against toxic effects of catecholamine on electrical properties in human-induced pluripotent stem cell derived cardiomyocytes[J]. International Journal of Cardiology, 2018, 254: 195–202. doi: 10.1016/j.ijcard.2017.11.007
|
[21] |
ZHOU Wenli, GRAHAM K, LUCENDO-VILLARIN B, et al. Combining stem cell-derived hepatocytes with impedance sensing to better predict human drug toxicity[J]. Expert Opinion on Drug Metabolism & Toxicology, 2019, 15(1): 77–83. doi: 10.1080/17425255.2019.1558208
|
[22] |
ZHANG Zhizhong, ZHENG Tianyang, and ZHU Rong. Microchip with single-cell impedance measurements for monitoring osteogenic differentiation of mesenchymal stem cells under electrical stimulation[J]. Analytical Chemistry, 2020, 92(18): 12579–12587. doi: 10.1021/acs.analchem.0c02556
|
[23] |
LEI Kinfong, HO Y C, HUANG C H, et al. Characterization of stem cell-like property in cancer cells based on single-cell impedance measurement in a microfluidic platform[J]. Talanta, 2021, 229: 122259. doi: 10.1016/J.TALANTA.2021.122259
|
[24] |
GRAVESEN P, BRANEBJERG J, and JENSEN O S. Microfluidics-a review[J]. Journal of Micromechanics and Microengineering, 1993, 3(4): 168–182. doi: 10.1088/0960-1317/3/4/002
|
[25] |
REECE A, XIA Bingzhao, JIANG Zhongliang, et al. Microfluidic techniques for high throughput single cell analysis[J]. Current Opinion in Biotechnology, 2016, 40: 90–96. doi: 10.1016/j.copbio.2016.02.015
|
[26] |
GOLOWASCH J, THOMAS G, TAYLOR A L, et al. Membrane capacitance measurements revisited: Dependence of capacitance value on measurement method in nonisopotential neurons[J]. Journal of Neurophysiology, 2009, 102(4): 2161–2175. doi: 10.1152/jn.00160.2009
|
[27] |
SAKABA T, HAZAMA A, and MARUYAMA Y. Patch-clamp capacitance measurements[M]. OKADA Y. Patch clamp techniques: From Beginning to Advanced Protocols. Tokyo, 2012: 277–286.
|
[28] |
NEHER E and MARTY A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(21): 6712–6716. doi: 10.1073/pnas.79.21.6712
|
[29] |
FERNANDEZ J M, NEHER E, and GOMPERTS B D. Capacitance measurements reveal stepwise fusion events in degranulating mast cells[J]. Nature, 1984, 312(5993): 453–455. doi: 10.1038/312453a0
|
[30] |
LINDAU M and NEHER E. Patch-clamp techniques for time-resolved capacitance measurements in single cells[J]. Pflügers Archiv, 1988, 411(2): 137–146. doi: 10.1007/BF00582306
|
[31] |
DONNELLY D F. A novel method for rapid measurement of membrane resistance, capacitance, and access resistance[J]. Biophysical Journal, 1994, 66(3): 873–877. doi: 10.1016/S0006-3495(94)80863-X
|
[32] |
ROHLICEK V and SCHMID A. Dual-frequency method for synchronous measurement of cell capacitance, membrane conductance and access resistance on single cells[J]. Pflügers Archiv, 1994, 428(1): 30–38. doi: 10.1007/BF00374749
|
[33] |
O'SHAUGHNESSY T J and KIM Y I. A computer-based system for the measurement of membrane capacitance to monitor exocytosis in secretory cells[J]. Journal of Neuroscience Methods, 1995, 57(1): 1–8. doi: 10.1016/0165-0270(94)00104-O
|
[34] |
NEEF A, HEINEMANN C, and MOSER T. Measurements of membrane patch capacitance using a software-based lock-in system[J]. Pflügers Archiv, 2007, 454(2): 335–344. doi: 10.1007/s00424-006-0191-1
|
[35] |
CHEN Peng and GILLIS K D. The noise of membrane capacitance measurements in the whole-cell recording configuration[J]. Biophysical Journal, 2000, 79(4): 2162–2170. doi: 10.1016/S0006-3495(00)76464-2
|
[36] |
ZHANG Hao, QU Anlian, LUO Jie, et al. Error analysis of Cm measurement under the whole-cell patch-clamp recording[J]. Journal of Neuroscience Methods, 2010, 185(2): 307–314. doi: 10.1016/j.jneumeth.2009.10.003
|
[37] |
KODANDARAMAIAH S B, FRANZESI G T, CHOW B Y, et al. Automated whole-cell patch-clamp electrophysiology of neurons in vivo[J]. Nature Methods, 2012, 9(6): 585–587. doi: 10.1038/nmeth.1993
|
[38] |
FRANZ D, OLSEN H L, KLINK O, et al. Automated and manual patch clamp data of human induced pluripotent stem cell-derived dopaminergic neurons[J]. Scientific Data, 2017, 4(1): 170056. doi: 10.1038/sdata.2017.56
|
[39] |
GOATER A D and PETHIG R. Electrorotation and dielectrophoresis[J]. Parasitology, 1998, 117 Suppl: S177–S189.
|
[40] |
GIMSA J. A comprehensive approach to electro-orientation, electrodeformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells[J]. Bioelectrochemistry, 2001, 54(1): 23–31. doi: 10.1016/S0302-4598(01)00106-4
|
[41] |
ARNOLD W M and ZIMMERMANN U. Rotating-field-induced rotation and measurement of the membrane capacitance of single mesophyll cells of Avena sativa[J]. Zeitschrift Für Naturforschung C, 1982, 37(10): 908–915. doi: 10.1515/znc-1982-1010
|
[42] |
ARNOLD W M, WENDT B, ZIMMERMANN U, et al. Rotation of a single swollen thylakoid vesicle in a rotating electric field. Electrical properties of the photosynthetic membrane and their modification by ionophores, lipophilic ions and pH[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1985, 813(1): 117–131. doi: 10.1016/0005-2736(85)90352-9
|
[43] |
FUHR G, GLASER R, and HAGEDORN R. Rotation of dielectrics in a rotating electric high-frequency field. Model experiments and theoretical explanation of the rotation effect of living cells[J]. Biophysical Journal, 1986, 49(2): 395–402. doi: 10.1016/S0006-3495(86)83649-9
|
[44] |
FUHR G and KUZMIN P I. Behavior of cells in rotating electric fields with account to surface charges and cell structures[J]. Biophysical Journal, 1986, 50(5): 789–795. doi: 10.1016/S0006-3495(86)83519-6
|
[45] |
HUGHES M P, WANG X B, BECKER F F, et al. Computer-aided analyses of electric fields used in electrorotation studies[J]. Journal of Physics D:Applied Physics, 1994, 27(7): 1564–1570. doi: 10.1088/0022-3727/27/7/035
|
[46] |
HUGHES M P. Computer-aided analysis of conditions for optimizing practical electrorotation[J]. Physics in Medicine and Biology, 1998, 43(12): 3639–3648. doi: 10.1088/0031-9155/43/12/019
|
[47] |
DE GASPERIS G, WANG Xiaobo, YANG Jun, et al. Automated electrorotation: Dielectric characterization of living cells by real-time motion estimation[J]. Measurement Science and Technology, 1998, 9(3): 518–529. doi: 10.1088/0957-0233/9/3/029
|
[48] |
ZHOU X F, BURT J P H, and PETHIG R. Automatic cell electrorotation measurements: Studies of the biological effects of low-frequency magnetic fields and of heat shock[J]. Physics in Medicine and Biology, 1998, 43(5): 1075–1090. doi: 10.1088/0031-9155/43/5/003
|
[49] |
CRISTOFANILLI M, DE GASPERIS G, ZHANG Lisha, et al. Automated electrorotation to reveal dielectric variations related to HER-2/neu overexpression in MCF-7 sublines[J]. Clinical Cancer Research, 2002, 8(2): 615–619.
|
[50] |
MIETCHEN D, SCHNELLE T, MÜLLER T, et al. Automated dielectric single cell spectroscopy- temperature dependence of electrorotation[J]. Journal of Physics D:Applied Physics, 2002, 35(11): 1258–1270. doi: 10.1088/0022-3727/35/11/324
|
[51] |
BECKER F F, WANG Xujing, HUANG Y, et al. Separation of human breast cancer cells from blood by differential dielectric affinity[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(3): 860–864. doi: 10.1073/pnas.92.3.860
|
[52] |
LANNIN T, SU W W, GRUBER C, et al. Automated electrorotation shows electrokinetic separation of pancreatic cancer cells is robust to acquired chemotherapy resistance, serum starvation, and EMT[J]. Biomicrofluidics, 2016, 10(6): 064109. doi: 10.1063/1.4964929
|
[53] |
HU Xun, ARNOLD W M, and ZIMMERMANN U. Alterations in the electrical properties of T and B lymphocyte membranes induced by mitogenic stimulation. Activation monitored by electro-rotation of single cells[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1990, 1021(2): 191–200. doi: 10.1016/0005-2736(90)90033-K
|
[54] |
YANG Jun, HUANG Ying, WANG Xujing, et al. Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion[J]. Biophysical Journal, 1999, 76(6): 3307–3314. doi: 10.1016/S0006-3495(99)77483-7
|
[55] |
LABEED F H, COLEY H M, THOMAS H, et al. Assessment of multidrug resistance reversal using dielectrophoresis and flow cytometry[J]. Biophysical Journal, 2003, 85(3): 2028–2034. doi: 10.1016/S0006-3495(03)74630-X
|
[56] |
DENICOLA P D B. Advances in hematology analyzers[J]. Topics in Companion Animal Medicine, 2011, 26(2): 52–61. doi: 10.1053/j.tcam.2011.02.001
|
[57] |
CHOI H, KIM K B, JEON C S, et al. A label-free DC impedance-based microcytometer for circulating rare cancer cell counting[J]. Lab on A Chip, 2013, 13(5): 970–977. doi: 10.1039/c2lc41376k
|
[58] |
RHO J, JANG W, HWANG I, et al. Multiplex immunoassays using virus-tethered gold microspheres by DC impedance-based flow cytometry[J]. Biosensors and Bioelectronics, 2017, 102: 121–128. doi: 10.1016/j.bios.2017.11.027
|
[59] |
SIMON P, FRANKOWSKI M, BOCK N, et al. Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer[J]. Lab on A Chip, 2016, 16(12): 2326–2338. doi: 10.1039/c6lc00128a
|
[60] |
CAREY T R, COTNER K L, LI B, et al. Developments in label-free microfluidic methods for single-cell analysis and sorting[J]. WIREs:Nanomedicine and Nanobiotechnology, 2019, 11(1): e1529. doi: 10.1002/wnan.1529
|
[61] |
TERSTAPPEN L W M M, DE GROOTH B G, TEN NAPEL C H H, et al. Discrimination of human cytotoxic lymphocytes from regulatory and B-lymphocytes by orthogonal light scattering[J]. Journal of Immunological Methods, 1986, 95(2): 211–216. doi: 10.1016/0022-1759(86)90408-4
|
[62] |
CIFANI N, PROIETTA M, TAURINO M, et al. Monocyte Subsets, stanford-a acute aortic dissection, and carotid artery stenosis: New evidences[J]. Journal of Immunology Research, 2019, 2019: 9782594. doi: 10.1155/2019/9782594
|
[63] |
DANNHAUSER D, ROSSI D, RIPALDI M, et al. Single-cell screening of multiple biophysical properties in leukemia diagnosis from peripheral blood by pure light scattering[J]. Scientific Reports, 2017, 7(1): 12666. doi: 10.1038/s41598-017-12990-4
|
[64] |
SCHMIT T, KLOMP M, and KHAN M N. An overview of flow cytometry: Its principles and applications in allergic disease research[M]. NAGAMOTO-COMBS K. Animal Models of Allergic Disease: Methods and Protocols. New York, USA, 2021, 2223: 169–182.
|
[65] |
RUBAN G I, KOSMACHEVA S M, GONCHAROVA N V, et al. Investigation of morphometric parameters for granulocytes and lymphocytes as applied to a solution of direct and inverse light-scattering problems[J]. Journal of Biomedical Optics, 2007, 12(4): 044017. doi: 10.1117/1.2753466
|
[66] |
LIU Shanshan, YUAN Zeng, QIAO Xu, et al. Light scattering pattern specific convolutional network static cytometry for label-free classification of cervical cells[J]. Cytometry Part A, 2021, 99(6): 610–621. doi: 10.1002/cyto.a.24349
|
[67] |
STAVRAKIS S, HOLZNER G, CHOO J, et al. High-throughput microfluidic imaging flow cytometry[J]. Current Opinion in Biotechnology, 2019, 55: 36–43. doi: 10.1016/j.copbio.2018.08.002
|
[68] |
GAWAD S, SCHILD L, and RENAUD P. Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing[J]. Lab on A Chip, 2001, 1(1): 76–82. doi: 10.1039/b103933b
|
[69] |
CHEUNG K, GAWAD S, and RENAUD P. Impedance spectroscopy flow cytometry: On-chip label-free cell differentiation[J]. Cytometry Part A, 2005, 65A(2): 124–132. doi: 10.1002/cyto.a.20141
|
[70] |
HOLMES D, PETTIGREW D, RECCIUS C H, et al. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry[J]. Lab on A Chip, 2009, 9(20): 2881–2889. doi: 10.1039/b910053a
|
[71] |
HOLMES D and MORGAN H. Single cell impedance cytometry for identification and counting of CD4 T-cells in human blood using impedance labels[J]. Analytical Chemistry, 2010, 82(4): 1455–1461. doi: 10.1021/ac902568p
|
[72] |
CASELLI F and BISEGNA P. Simulation and performance analysis of a novel high-accuracy sheathless microfluidic impedance cytometer with coplanar electrode layout[J]. Medical Engineering & Physics, 2017, 48: 81–89. doi: 10.1016/j.medengphy.2017.04.005
|
[73] |
REALE R, DE NINNO A, BUSINARO L, et al. High-throughput electrical position detection of single flowing particles/cells with non-spherical shape[J]. Lab on A Chip, 2019, 19(10): 1818–1827. doi: 10.1039/C9LC00071B
|
[74] |
HONRADO C, MCGRATH J S, REALE R, et al. A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry[J]. Analytical and Bioanalytical Chemistry, 2020, 412(16): 3835–3845. doi: 10.1007/s00216-020-02497-9
|
[75] |
YANG Dahou and AI Ye. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles[J]. Lab on A Chip, 2019, 19(21): 3609–3617. doi: 10.1039/c9lc00819e
|
[76] |
SPENCER D and MORGAN H. High-speed single-cell dielectric spectroscopy[J]. ACS Sensors, 2020, 5(2): 423–430. doi: 10.1021/acssensors.9b02119
|
[77] |
TANG Tao, LIU Xun, KIYA R, et al. Microscopic impedance cytometry for quantifying single cell shape[J]. Biosensors and Bioelectronics, 2021, 193: 113521. doi: 10.1016/j.bios.2021.113521
|
[78] |
ZHAO Yang, CHEN Deyong, LI Hao, et al. A microfluidic system enabling continuous characterization of single-cell specific membrane capacitance and cytoplasm conductivity[C]. The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Suzhou, China, 2013: 344–347.
|
[79] |
ZHAO Yang, WANG Ke, CHEN Deyong, et al. Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100, 000 single cells[J]. Biosensors and Bioelectronics, 2018, 111: 138–143. doi: 10.1016/j.bios.2018.04.015
|
[80] |
ZHANG Yi, LIANG Hongyan, TAN Huiwen, et al. Development of microfluidic platform to high-throughput quantify single-cell intrinsic bioelectrical markers of tumor cell lines, subtypes and patient tumor cells[J]. Sensors and Actuators B:Chemical, 2020, 317: 128231. doi: 10.1016/j.snb.2020.128231
|