Citation: | GU Yiran, WANG Yu, YANG Haigen. Multi-action Click Prediction Model for Short Video Users Based On User’s Behavior Sequence[J]. Journal of Electronics & Information Technology, 2023, 45(2): 672-679. doi: 10.11999/JEIT211458 |
[1] |
WANG Xinfei. A survey of online advertising click-through rate prediction models[C]. 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 2020: 516–521.
|
[2] |
CHAPELLE O, MANAVOGLU E, and ROSALES R. Simple and scalable response prediction for display advertising[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 5(4): 61. doi: 10.1145/2532128
|
[3] |
GAI Kun, ZHU Xiaoqiang, LI Han, et al. Learning piece-wise linear models from large scale data for Ad click prediction[J]. arXiv: 1704.05194, 2017.
|
[4] |
RENDLE S. Factorization machines[C]. 2010 IEEE International Conference on Data Mining, Sydney, Australia, 2010: 995–1000.
|
[5] |
CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]. The 1st Workshop on Deep Learning for Recommender Systems, Boston, USA, 2016: 7–10.
|
[6] |
GUO Huifeng, TANG Ruiming, YE Yunming, et al. DeepFM: A factorization-machine based neural network for CTR prediction[C]. The 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 1725–1731.
|
[7] |
LIPTON Z C. A critical review of recurrent neural networks for sequence learning[J]. arXiv: 1506.00019, 2015.
|
[8] |
HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
|
[9] |
CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation[C]. The 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 2014: 1724–1734.
|
[10] |
WANG Shoujin, HU Liang, WANG Yan, et al. Sequential recommender systems: Challenges, progress and prospects[C]. The Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China, 2019: 6332–6338.
|
[11] |
MIKOLOV T, CHEN Kai, CORRADO G, et al. Efficient estimation of word representations in vector space[C]. The 1st International Conference on Learning Representations, Scottsdale, USA, 2013.
|
[12] |
BAEK J W and CHUNG K Y. Multimedia recommendation using Word2Vec-based social relationship mining[J]. Multimedia Tools and Applications, 2021, 80(26): 34499–34515. doi: 10.1007/s11042-019-08607-9
|
[13] |
ESMELI R, BADER-EL-DEN M, and ABDULLAHI H. Using Word2Vec recommendation for improved purchase prediction[C]. 2020 International Joint Conference on Neural Networks, Glasgow, UK, 2020: 1–8.
|
[14] |
王瑞平, 贾真, 刘畅, 等. 基于DeepFM的深度兴趣因子分解机网络[J]. 计算机科学, 2021, 48(1): 226–232. doi: 10.11896/jsjkx.191200098
WANG Ruiping, JIA Zhen, LIU Chang, et al. Deep interest factorization machine network based on DeepFM[J]. Computer Science, 2021, 48(1): 226–232. doi: 10.11896/jsjkx.191200098
|
[15] |
陈一文. 一种改进的基于DeepFM算法的高效CTR预估方法[D]. [硕士论文], 吉林大学, 2020.
CHEN Yiwen. An efficient CTR prediction method based on improved DeepFM algorithm[D]. [Master dissertation], Jilin University, 2020.
|
[16] |
CHEN Qiwei, ZHAO Huan, LI Wei, et al. Behavior sequence transformer for e-commerce recommendation in Alibaba[C]. The 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data, Anchorage, Alaska, 2019: 12.
|
[17] |
MA Jiaqi, ZHAO Zhe, YI Xinyang, et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts[C]. The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, United Kingdom, 2018: 1930–1939.
|
[18] |
ZHU Han, JIN Junqi, TAN Chang, et al. Optimized cost per click in Taobao display advertising[C]. The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Canada, 2017: 2191–2200.
|