Advanced Search
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
ZHOU Jingchun, WEI Xiaojing, SHI Jinyu. Underwater Image Enhancement Algorithm Based on Blue-green Channel Color Compensation[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2932-2939. doi: 10.11999/JEIT211444
Citation: ZHOU Jingchun, WEI Xiaojing, SHI Jinyu. Underwater Image Enhancement Algorithm Based on Blue-green Channel Color Compensation[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2932-2939. doi: 10.11999/JEIT211444

Underwater Image Enhancement Algorithm Based on Blue-green Channel Color Compensation

doi: 10.11999/JEIT211444
Funds:  The Foundational Research Foundation for the Central University (3132019354)
  • Received Date: 2021-12-06
  • Rev Recd Date: 2022-03-01
  • Available Online: 2022-04-11
  • Publish Date: 2022-08-17
  • When light travels in water, it is absorbed by water and scattered by particles, resulting in color distortion, low quality, and poor visibility of underwater images. To solve this problem, an underwater image enhancement method is proposed based on blue-green channel color compensation. First, the characteristics of the underwater imaging model is analyzed, and the depth of the underwater scene is classified according to the proportion of the mean value of the blue and green channels in the sum of the mean value of the three channels, the light attenuation rate characteristic is used to adaptively compensate the color, and multi-scene color correction is realized. Then the color-compensated image is divided into four regions: dark tone, mid-dark tone, mid-bright tone, and bright tone. The dark region of the image is mapped to the bright region using the dark region mapping function, which improves the contrast while suppressing the generation of noise. Finally, bilinear interpolation is used to solve the regional effect of block processing. Experimental results on real underwater datasets show that compared with existing methods, this method can improve low-quality underwater images in a variety of scenes.
  • loading
  • [1]
    郭银景, 吴琪, 苑娇娇, 等. 水下光学图像处理研究进展[J]. 电子与信息学报, 2021, 43(2): 426–435. doi: 10.11999/JEIT190803

    GUO Yinjing, WU Qi, YUAN Jiaojiao, et al. Research progress on underwater optical image processing[J]. Journal of Electronics &Information Technology, 2021, 43(2): 426–435. doi: 10.11999/JEIT190803
    [2]
    ZHOU Jingchun, WANG Yanyun, ZHANG Weishi, et al. Underwater image restoration via feature priors to estimate background light and optimized transmission map[J]. Optics Express, 2021, 29(18): 28228–28245. doi: 10.1364/OE.432900
    [3]
    HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353. doi: 10.1109/TPAMI.2010.168
    [4]
    ZHOU Jingchun, ZHANG Dehuan, and ZHANG Weishi. Classical and state-of-the-art approaches for underwater image defogging: A comprehensive survey[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(12): 1745–1769. doi: 10.1631/FITEE.2000190
    [5]
    GUO Yecai, LI Hanyu, and ZHUANG Peixian. Underwater image enhancement using a multiscale dense generative adversarial network[J]. IEEE Journal of Oceanic Engineering, 2020, 45(3): 862–870. doi: 10.1109/joe.2019.2911447
    [6]
    杨爱萍, 郑佳, 王建, 等. 基于颜色失真去除与暗通道先验的水下图像复原[J]. 电子与信息学报, 2015, 37(11): 2541–2547. doi: 10.11999/JEIT150483

    YANG Aiping, ZHENG Jia, WANG Jian, et al. Underwater image restoration based on color cast removal and dark channel prior[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2541–2547. doi: 10.11999/JEIT150483
    [7]
    代成刚, 林明星, 王震, 等. 基于亮通道色彩补偿与融合的水下图像增强[J]. 光学学报, 2018, 38(11): 1110003. doi: 10.3788/AOS201838.1110003

    DAI Chenggang, LIN Mingxing, WANG Zhen, et al. Color compensation based on bright channel and fusion for underwater image enhancement[J]. Acta Optica Sinica, 2018, 38(11): 1110003. doi: 10.3788/AOS201838.1110003
    [8]
    杨爱萍, 张莉云, 曲畅, 等. 基于加权L1正则化的水下图像清晰化算法[J]. 电子与信息学报, 2017, 39(3): 626–633. doi: 10.11999/JEIT160481

    YANG Aiping, ZHANG Liyun, QU Chang, et al. Underwater images visibility improving algorithm with weighted L1 regularization[J]. Journal of Electronics &Information Technology, 2017, 39(3): 626–633. doi: 10.11999/JEIT160481
    [9]
    SONG Huajun and WANG Rui. Underwater Image enhancement based on multi-scale fusion and global stretching of dual-model[J]. Mathematics, 2021, 9(6): 595. doi: 10.3390/math9060595
    [10]
    WEN Haocheng, TIAN Yonghong, HUANG Tiejun, et al. Single underwater image enhancement with a new optical model[C]. 2013 IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 2013: 753–756.
    [11]
    LI Chongyi, GUO Chunle, REN Wenqi, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2019, 29: 4376–4389. doi: 10.1109/TIP.2019.2955241
    [12]
    DREWS P JR, DO NASCIMENTO E, MORAES F, et al. Transmission estimation in underwater single images[C]. 2013 IEEE International Conference on Computer Vision Workshops, Sydney, NSW, Australia, 2013: 825–830.
    [13]
    FU Xueyang, ZHUANG Peixian, HUANG Yue, et al. A retinex-based enhancing approach for single underwater image[C]. 2014 IEEE International Conference on Image Processing, Paris, France, 2014: 4572–4576.
    [14]
    FU Xueyang, FAN Zhiwei, LING Mei, et al. Two-step approach for single underwater image enhancement[C]. 2017 International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, China, 2017: 789–794.
    [15]
    PENG Y T and COSMAN P C. Underwater image restoration based on image blurriness and light absorption[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1579–1594. doi: 10.1109/TIP.2017.2663846
    [16]
    PENG Y T, CAO Keming, and COSMAN P C. Generalization of the dark channel prior for single image restoration[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2856–2868. doi: 10.1109/TIP.2018.2813092
    [17]
    HUANG Dongmei, WANG Yan, SONG Wei, et al. Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition[C]. 24th International Conference on Multimedia Modeling, Bangkok, Thailand, 2018: 453–465.
    [18]
    LI Chongyi, GUO Jichang, PANG Yanwei, et al. Single underwater image restoration by blue-green channels dehazing and red channel correction[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 1731–1735.
    [19]
    ZHUANG Peixian, LI Chongyi, and WU Jiamin. Bayesian retinex underwater image enhancement[J]. Engineering Applications of Artificial Intelligence, 2021, 101: 104171. doi: 10.1016/j.engappai.2021.104171
    [20]
    YANG Miao and SOWMYA A. An underwater color image quality evaluation metric[J]. IEEE Transactions on Image Processing, 2015, 24(12): 6062–6071. doi: 10.1109/TIP.2015.2491020
    [21]
    LEI Tao, JIA Xiaohong, ZHANG Yanning, et al. Superpixel-based fast fuzzy C-means clustering for color image segmentation[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(9): 1753–1766. doi: 10.1109/TFUZZ.2018.2889018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (627) PDF downloads(138) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return