Citation: | ZENG Deyu, LIANG Zexiao, WU Zongze. Optimal Mean Linear Classifier via Weighted Nuclear Norm and L2,1 Norm[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1602-1609. doi: 10.11999/JEIT211434 |
[1] |
孙洪宇, 彭丽莎, 屈凯峰, 等. 机器学习在复合绝缘子缺陷超声检测中的应用与展望[J]. 无损检测, 2021, 43(5): 58–63. doi: 10.11973/wsjc202105013
SUN Hongyu, PENG Lisha, QU Kaifeng, et al. Application and prospect of machine learning in ultrasonic testing of composite insulator defects[J]. Nondestructive Testing, 2021, 43(5): 58–63. doi: 10.11973/wsjc202105013
|
[2] |
唐伦, 廖皓, 曹睿, 等. 基于深度动态贝叶斯网络的服务功能链故障诊断算法[J]. 电子与信息学报, 2021, 43(12): 3588–3596. doi: 10.11999/JEIT200029
TANG Lun, LIAO Hao, CAO Rui, et al. Fault diagnosis algorithm of service function chain based on deep dynamic Bayesian network[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3588–3596. doi: 10.11999/JEIT200029
|
[3] |
王剑, 匡洪宇, 李瑞林, 等. 基于CNN-GAP可解释性模型的软件源码漏洞检测方法[J]. 电子与信息学报, 待发表. doi: 10.11999/JEIT210412.
WANG Jian, KUANG Hongyu, LI Ruilin, et al. . Software source code vulnerability detection based on CNN-GAP interpretability model[J]. Journal of Electronics & Information Technology, To be published. doi: 10.11999/JEIT210412.
|
[4] |
刘华祠. 基于传统机器学习与深度学习的图像分类算法对比分析[J]. 电脑与信息技术, 2019, 27(5): 12–15. doi: 10.19414/j.cnki.1005-1228.2019.05.004
LIU Huaci. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning[J]. Computer and Information Technology, 2019, 27(5): 12–15. doi: 10.19414/j.cnki.1005-1228.2019.05.004
|
[5] |
刘浩, 陈再良, 张良. 基于机器学习的刀具表面缺陷检测及分类方法[J]. 计算机测量与控制, 2021, 29(6): 64–68. doi: 10.16526/j.cnki.11-4762/tp.2021.06.014
LIU Hao, CHEN Zailiang, and ZHANG Liang. Tool surface defect detection and classification based on machine learning[J]. Computer Measurement &Control, 2021, 29(6): 64–68. doi: 10.16526/j.cnki.11-4762/tp.2021.06.014
|
[6] |
李宇庭, 甘芳吉, 万正军, 等. 基于SVM及电流牵扯效应的金属缺陷分类识别方法[J]. 四川大学学报(工程科学版), 2015, 47(6): 172–178. doi: 10.15961/j.jsuese.2015.06.024
LI Yuting, GAN Fangji, WAN Zhengjun, et al. Method for defect classification based on SVM and current drag effect[J]. Journal of Sichuan University (Engineering Science Edition)
|
[7] |
舒文娉, 刘全香. 基于支持向量机的印品缺陷分类方法[J]. 包装工程, 2014, 35(23): 138–142. doi: 10.19554/j.cnki.1001-3563.2014.23.028
SHU Wenping and LIU Quanxiang. Classification method of printing defects based on support vector machine[J]. Packaging Engineering, 2014, 35(23): 138–142. doi: 10.19554/j.cnki.1001-3563.2014.23.028
|
[8] |
HAGI H, IWAHORI Y, FUKUI S, et al. Defect classification of electronic circuit board using SVM based on random sampling[J]. Procedia Computer Science, 2014, 35: 1210–1218. doi: 10.1016/j.procs.2014.08.218
|
[9] |
WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 31(2): 210–227. doi: 10.1109/TPAMI.2008.79
|
[10] |
CHEN Yudong, CARAMANIS C, and MANNOR S. Robust sparse regression under adversarial corruption[C]. The 30th International Conference on International Conference on Machine Learning, Atlanta, USA, 2013: III-774–III-782.
|
[11] |
NIE Feiping, HUANG Heng, CAI Xiao, et al. Efficient and robust feature selection via joint ℓ2, 1-norms minimization[C]. The 23rd International Conference on Neural Information Processing Systems, Red Hook, USA, 2010: 1813–1821.
|
[12] |
SHI Xiaoshuang, YANG Yujiu, GUO Zhenhua, et al. Face recognition by sparse discriminant analysis via joint L2, 1-norm minimization[J]. Pattern Recognition, 2014, 47(7): 2447–2453. doi: 10.1016/j.patcog.2014.01.007
|
[13] |
VAPNIK V. Statistical Learning Theory[M]. New York, USA: Wiley, 1998.
|
[14] |
MARONNA R A, MARTIN R D, and YOHAI V J. Robust Statistics: Theory and Methods[M]. Chichester: John Wiley & Sons, Ltd, 2006.
|
[15] |
李松涛, 李维刚, 甘平, 等. 基于Sinkhorn距离特征缩放的多约束非负矩阵分解算法[J/OL]. 电子与信息学报, 待发表. doi: 10.11999/JEIT210946
LI Songtao, LI Weigang, GAN Ping, et al. Multi-constrained non-negative matrix factorization algorithm based on sinkhorn distance feature scaling[J/OL]. Journal of Electronics & Information Technology, To be published. doi: 10.11999/JEIT210946.
|
[16] |
李相平, 王明泽, 但波, 等. 基于鲁棒主成分分析的多域联合杂波抑制算法[J]. 电子与信息学报, 2022, 44(4): 1303–1310. doi: 10.11999/JEIT210676
LI Xiangping, WANG Mingze, DAN Bo, et al. The multi-domain union clutter suppression algorithm based on robust principal component analysis[J]. Journal of Electronics &Information Technology, 2022, 44(4): 1303–1310. doi: 10.11999/JEIT210676
|
[17] |
唐红梅, 白梦月, 韩力英, 等. 基于低秩背景约束与多线索传播的图像显著性检测[J]. 电子与信息学报, 2021, 43(5): 1432–1440. doi: 10.11999/JEIT200193
TANG Hongmei, BAI Mengyue, HAN Liying, et al. Image saliency detection based on background constraint of low rank and multi-cue propagation[J]. Journal of Electronics &Information Technology, 2021, 43(5): 1432–1440. doi: 10.11999/JEIT200193
|
[18] |
CANDÈS E J, LI Xiaodong, MA Yi, et al. Robust principal component analysis?[J] Journal of the ACM, 2009, 58(3): 11.
|
[19] |
DING C, ZHOU Ding, HE Xiaofeng, et al. R1-PCA: Rotational invariant L1-norm principal component analysis for robust subspace factorization[C].The 23rd International Conference on Machine Learning, New York, USA, 2006: 281–288.
|
[20] |
YI Shuangyan, HE Zhenyu, and YANG Weiguo. Robust principal component analysis via joint ℓ2, 1-norms minimization[C]. 2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), Shenzhen, China, 2017: 13–18.
|
[21] |
NIE Feiping, HUANG Heng, and DING Chris HQ. Low-rank matrix recovery via efficient schatten p-norm minimization[C]. The Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, Canada, 2012: 655–661.
|
[22] |
NIE Feiping, WANG Hua, CAI Xiao, et al. Robust matrix completion via joint schatten p-norm and ℓp-norm minimization[C]. 2012 IEEE 12th International Conference on Data Mining, Brussels, Belgium, 2012: 566–574.
|
[23] |
HE Ran, HU Baogang, ZHENG Weishi, et al. Robust principal component analysis based on maximum correntropy criterion[J]. IEEE Transactions on Image Processing, 2011, 20(6): 1485–1494. doi: 10.1109/TIP.2010.2103949
|
[24] |
NIE Feiping, YUAN Jianjun, and HUANG Heng. Optimal mean robust principal component analysis[C]. The 31st International Conference on International Conference on Machine Learning, Beijing, China, 2014: II-1062–II-1070.
|
[25] |
SHI Xiaoshuang, NIE Feiping, LAI Zhihui, et al. Robust principal component analysis via optimal mean by joint ℓ2, 1 and schatten p -norms minimization[J]. Neurocomputing, 2018, 283: 205–213. doi: 10.1016/j.neucom.2017.12.034
|
[26] |
LIANG Yiniang, REN Zhigang, WU Zongze, et al. Scalable spectral ensemble clustering via building representative co-association matrix[J]. Neurocomputing, 2020, 390: 158–167. doi: 10.1016/j.neucom.2020.01.055
|
[27] |
LIANG Zexiao, GUO Shaozhi, LIU Dakang, et al. Spectral clustering based on high-frequency texture components for face datasets[J]. IET Image Processing, 2021, 15(10): 2240–2246. doi: 10.1049/IPR2.12191
|
[28] |
WU Zongze, LIU Sihui, DING C, et al. Learning graph similarity with large spectral gap[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2021, 51(3): 1590–1600. doi: 10.1109/TSMC.2019.2899398
|
[29] |
WU Zongze, SU Chuncheng, YIN Ming, et al. Subspace clustering via stacked independent subspace analysis networks with sparse prior information[J]. Pattern Recognition Letters, 2021, 146: 165–171. doi: 10.1016/j.patrec.2021.03.026
|
[30] |
GOLDBERG A B, ZHU Xiaojin, RECHT Ben, et al. Transduction with matrix completion: Three birds with one stone[C]. The 23rd International Conference on Neural Information Processing Systems, Red Hook, USA, 2010: 757–765.
|
[31] |
CABRAL R, DE LA TORRE F, COSTEIRA J P, et al. Matrix completion for weakly supervised multi-label image classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(1): 121–135. doi: 10.1109/TPAMI.2014.2343234
|
[32] |
HUANG Dong, CABRAL R, and DE LA TORRE F. Robust regression[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 363–375. doi: 10.1109/TPAMI.2015.2448091
|
[33] |
ZENG Deyu, WU Zongze, DING C, et al. Labeled-robust regression: Simultaneous data recovery and classification[J]. IEEE Transactions on Cybernetics, To be published. doi: 10.1109/TCYB.2020.3026101
|
[34] |
WRIGHT J, PENG Yigang, MA Yi, et al. Robust principal component analysis: Exact recovery of corrupted low-rank matrices by convex optimization[C]. The 22nd International Conference on Neural Information Processing Systems, Red Hook, USA, 2009: 2080–2088.
|
[35] |
LIN Zhouchen, CHEN Minming, WU Leqin, et al. The augmented Lagrange multiplier method for exact recovery of corrupted low rank matrices[R]. UILU-ENG-09–2215, 2009.
|
[36] |
YIN Ming, ZENG Deyu, GAO Junbin, et al. Robust multinomial logistic regression based on RPCA[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(6): 1144–1154. doi: 10.1109/JSTSP.2018.2872460
|
[37] |
GU Shuhang, XIE Qi, MENG Deyu, et al. Weighted nuclear norm minimization and its applications to low level vision[J]. International Journal of Computer Vision, 2017, 121(2): 183–208. doi: 10.1007/s11263-016-0930-5
|
[38] |
CAI Jianfeng, CANDÈS E J, and SHEN Zuowei. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2008, 20(4): 1956–1982. doi: 10.1137/080738970
|
[39] |
ZHANG Zheng, XU Yong, SHAO Ling, et al. Discriminative block-diagonal representation learning for image recognition[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(7): 3111–3125. doi: 10.1109/TNNLS.2017.2712801
|