Citation: | HU Xiaofang, YANG Tao. Hierarchical State Regularization Variational AutoEncoder Based on Memristor Recurrent Neural Network[J]. Journal of Electronics & Information Technology, 2023, 45(2): 689-697. doi: 10.11999/JEIT211431 |
[1] |
KINGMA D P and WELLING M. Auto-encoding variational bayes[C]. The 2nd International Conference on Learning Representations, Banff, Canada, 2014.
|
[2] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139–144. doi: 10.1145/3422622
|
[3] |
VAN DEN OORD A, LI Yazhe, and VINYALS O. Representation learning with contrastive predictive coding[J]. arXiv: 1807.03748, 2018.
|
[4] |
RAZAVI A, VAN DEN OORD A, and VINYALS O. Generating diverse high-fidelity images with VQ-VAE-2[C]. The 33rd Conference on Neural Information Processing Systems, Vancouver, Canada, 2019.
|
[5] |
LI Xiao, LIN Chenghua, LI Ruizhe, et al. Latent space factorisation and manipulation via matrix subspace projection[C/OL]. The 37th International Conference on Machine Learning, 2020.
|
[6] |
LI Ruizhe, LI Xiao, LIN Chenghua, et al. A stable variational autoencoder for text modelling[C]. The 12th International Conference on Natural Language Generation, Tokyo, Japan, 2019.
|
[7] |
FANG Le, LI Chunyuan, GAO Jianfeng, et al. Implicit deep latent variable models for text generation[C]. The 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, 2019.
|
[8] |
GU Xiaodong, CHO K, HA J W, et al. DialogWAE: Multimodal response generation with conditional wasserstein auto-encoder[C]. The 7th International Conference on Learning Representations, New Orleans, USA, 2019.
|
[9] |
JOHN V, MOU Lili, BAHULEYAN H, et al. Disentangled representation learning for non-parallel text style transfer[C]. The 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019.
|
[10] |
BOWMAN S R, VILNIS L, VINYALS O, et al. Generating sentences from a continuous space[C]. The 20th SIGNLL Conference on Computational Natural Language Learning, Berlin, Germany, 2016: 10–21.
|
[11] |
YANG Zichao, HU Zhiting, SALAKHUTDINOV R, et al. Improved variational autoencoders for text modeling using dilated convolutions[C]. The 34th International Conference on Machine Learning, Sydney, Australia, 2017: 3881–3890.
|
[12] |
XU Jiacheng and DURRETT G. Spherical latent spaces for stable variational autoencoders[C]. The 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018: 4503–4513.
|
[13] |
SHEN Dinghan, CELIKYILMAZ A, ZHANG Yizhe, et al. Towards generating long and coherent text with multi-level latent variable models[C]. The 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 2079–2089.
|
[14] |
HAO Fu, LI Chunyuan, LIU Xiaodong, et al. Cyclical annealing schedule: A simple approach to mitigating KL vanishing[C]. 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, USA, 2019: 240–250.
|
[15] |
HE Junxian, SPOKOYNY D, NEUBIG G, et al. Lagging inference networks and posterior collapse in variational autoencoders[C]. The 7th International Conference on Learning Representations, New Orleans, USA, 2019.
|
[16] |
ZHU Qile, BI Wei, LIU Xiaojiang, et al. A batch normalized inference network keeps the KL vanishing away[C/OL]. The 58th Annual Meeting of the Association for Computational Linguistics, 2020: 2636–2649.
|
[17] |
LI Ruizhe, LI Xiao, CHEN Guanyi, et al. Improving variational autoencoder for text modelling with timestep-wise regularisation[C]. The 28th International Conference on Computational Linguistics, Barcelona, Spain, 2020: 2381–2397.
|
[18] |
PANG Bo, NIJKAMP E, HAN Tian, et al. Generative text modeling through short run inference[C/OL]. The 16th Conference of the European Chapter of the Association for Computational Linguistics, 2021: 1156–1165.
|
[19] |
SILVA F, SANZ M, SEIXAS J, et al. Perceptrons from memristors[J]. Neural Networks, 2020, 122: 273–278. doi: 10.1016/j.neunet.2019.10.013
|
[20] |
LIU Jiaqi, LI Zhenghao, TANG Yongliang, et al. 3D Convolutional Neural Network based on memristor for video recognition[J]. Pattern Recognition Letters, 2020, 130: 116–124. doi: 10.1016/j.patrec.2018.12.005
|
[21] |
WEN Shiping, WEI Huaqiang, YANG Yin, et al. Memristive LSTM network for sentiment analysis[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2021, 51(3): 1794–1804. doi: 10.1109/TSMC.2019.2906098
|
[22] |
ADAM K, SMAGULOVA K, and JAMES A P. Memristive LSTM network hardware architecture for time-series predictive modeling problems[C]. 2018 IEEE Asia Pacific Conference on Circuits and Systems, Chengdu, China, 2018: 459–462.
|
[23] |
GOKMEN T, RASCH M J, and HAENSCH W. Training LSTM networks with resistive cross-point devices[J]. Frontiers in Neuroscience, 2018, 12: 745. doi: 10.3389/fnins.2018.00745
|
[24] |
LI Can, WANG Zhongrui, RAO Mingyi, et al. Long short-term memory networks in memristor crossbar arrays[J]. Nature Machine Intelligence, 2019, 1(1): 49–57. doi: 10.1038/s42256-018-0001-4
|
[25] |
LIU Xiaoyang, ZENG Zhigang, and WUNSCH II D C. Memristor-based LSTM network with in situ training and its applications[J]. Neural Networks, 2020, 131: 300–311. doi: 10.1016/j.neunet.2020.07.035
|
[26] |
PARK Y, CHO J, and KIM G. A hierarchical latent structure for variational conversation modeling[C]. 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, USA, 2018: 1792–1801.
|
[27] |
CHUA L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi: 10.1109/TCT.1971.1083337
|
[28] |
STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932
|
[29] |
KIM Y, WISEMAN S, MILLER A C, et al. Semi-amortized variational autoencoders[C]. The 35 th International Conference on Machine Learning, Stockholm, Sweden, 2018: 2678–2687.
|
[30] |
ZHAO Tiancheng, ZHAO Ran, and ESKENAZI M. Learning discourse-level diversity for neural dialog models using conditional variational autoencoders[C]. The 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, 2017: 654–664.
|
[31] |
LI Yanran, SU Hui, SHEN Xiaoyu, et al. DailyDialog: A manually labelled multi-turn dialogue dataset[C]. The Eighth International Joint Conference on Natural Language Processing, Taipei, China, 2017: 986–995.
|
[32] |
KHEMAKHEM I, KINGMA D P, MONTI R P, et al. Variational autoencoders and nonlinear ICA: A unifying framework[C]. The Twenty Third International Conference on Artificial Intelligence and Statistics, Palermo, Italy, 2020.
|
[33] |
SERBAN I V, SORDONI A, LOWE R, et al. A hierarchical latent variable encoder-decoder model for generating dialogues[C]. The 31st AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017.
|
[34] |
YU Lantao, ZHANG Weinan, WANG Jun, et al. SeqGAN: Sequence generative adversarial nets with policy gradient[C]. The Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 2852–2858.
|