Advanced Search
Volume 44 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
LI Li, SUN Yulin, CAO Ran, GUO Longxiang. Research on Underwater Source Ranging Algorithm Based on Joint Distribution Adaptation[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2061-2070. doi: 10.11999/JEIT211418
Citation: LI Li, SUN Yulin, CAO Ran, GUO Longxiang. Research on Underwater Source Ranging Algorithm Based on Joint Distribution Adaptation[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2061-2070. doi: 10.11999/JEIT211418

Research on Underwater Source Ranging Algorithm Based on Joint Distribution Adaptation

doi: 10.11999/JEIT211418
Funds:  The National Natural Science Foundation of China (52071111, 51779061)
  • Received Date: 2021-12-02
  • Accepted Date: 2022-05-05
  • Rev Recd Date: 2022-05-03
  • Available Online: 2022-05-11
  • Publish Date: 2022-06-21
  • Underwater source passive ranging is based on the pressure radiated by the source in the received data. It is a parameter estimation problem to search for source position parameters in the airspace through the method. Parameter estimation problems are usually converted into classification problems by machine learning methods, which have more accurate estimation capabilities than traditional Matched Field Processing (MFP) and with needless prior sound field information. However, when the probability density of training data and test data follow different distributions or the training data is insufficient, the effect of the classifier under traditional machine learning methods is usually poor. Therefore, an underwater target source ranging algorithm based on Joint Distribution Adaptation (JDA) is proposed to find an appropriate transformation matrix for data mapping, thereby reducing the distribution differences and realizing the migration between source and target. The experimental results indicate that JDA can effectively reduce the differences between the track data obtained in the underwater acoustic field at different times and orientations, thus target could be predicted by classifier based on the source training. The resulting Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are reduced by more than 30%, enabling more accurate distance estimates.
  • loading
  • [1]
    BAGGEROER A B, KUPERMAN W A, and MIKHALEVSKY P N. An overview of matched field methods in ocean acoustics[J]. IEEE Journal of Oceanic Engineering, 1993, 18(4): 401–424. doi: 10.1109/48.262292
    [2]
    MICHALOPOULOU Z H, GERSTOFT P, and CAVIEDES-NOZAL D. Matched field source localization with Gaussian processes[J]. JASA Express Letters, 2021, 1(6): 064801. doi: 10.1121/10.0005069
    [3]
    BUCKER H P. Use of calculated sound fields and matched-field detection to locate sound sources in shallow water[J]. The Journal of the Acoustical Society of America, 1976, 59(2): 368–373. doi: 10.1121/1.380872
    [4]
    FIZELL R G and WALES S C. Source localization in range and depth in an Arctic environment[J]. The Journal of the Acoustical Society of America, 1985, 78(S1): S57–S58. doi: 10.1121/1.2022889
    [5]
    GINGRAS D F and GERSTOFT P. Inversion for geometric and geoacoustic parameters in shallow water: Experimental results[J]. The Journal of the Acoustical Society of America, 1995, 97(6): 3589–3598. doi: 10.1121/1.412442
    [6]
    杨剑锋, 乔佩蕊, 李永梅, 等. 机器学习分类问题及算法研究综述[J]. 统计与决策, 2019, 35(6): 36–40. doi: 10.13546/j.cnki.tjyjc.2019.06.008

    YANG Jianfeng, QIAO Peirui, LI Yongmei, et al. A review of machine-learning classification and algorithms[J]. Statistics and Decision, 2019, 35(6): 36–40. doi: 10.13546/j.cnki.tjyjc.2019.06.008
    [7]
    牛海强, 李整林, 王海斌, 等. 水声被动定位中的机器学习方法研究进展综述[J]. 信号处理, 2019, 35(9): 1450–1459. doi: 10.16798/j.issn.1003-0530.2019.09.002

    NIU Haiqiang, LI Zhenglin, WANG Haibin, et al. Overview of machine learning methods in underwater source localization[J]. Journal of Signal Processing, 2019, 35(9): 1450–1459. doi: 10.16798/j.issn.1003-0530.2019.09.002
    [8]
    CHEN R and SCHMIDT H. Model-based convolutional neural network approach to underwater source-range estimation[J]. The Journal of the Acoustical Society of America, 2021, 149(1): 405–420. doi: 10.1121/10.0003329
    [9]
    LIU Wenxu, YANG Yixin, XU Mengqian, et al. Source localization in the deep ocean using a convolutional neural network[J]. The Journal of the Acoustical Society of America, 2020, 147(4): EL314–EL319. doi: 10.1121/10.0001020
    [10]
    NAKADAI K, MASAKI S, KOJIMA R, et al. Sound source localization based on von-Mises-Bernoulli deep neural network[C]. 2020 IEEE/SICE International Symposium on System Integration (SII), Honolulu, USA, 2020: 658–663.
    [11]
    HUANG Zhaoqiong, XU Ji, GONG Zaixiao, et al. A deep neural network based method of source localization in a shallow water environment[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018: 3499–3503.
    [12]
    HAVYARIMANA V, XIAO Zhu, SEMONG T, et al. Achieving reliable intervehicle positioning based on Redheffer weighted least squares model under multi-GNSS outages[J/OL]. IEEE Transactions on Cybernetics, 2021.
    [13]
    LIU Bin, CHEN Hongyang, ZHONG Ziguo, et al. Asymmetrical round trip based synchronization-free localization in large-scale underwater sensor networks[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3532–3542. doi: 10.1109/TWC.2010.090210.100146
    [14]
    CHEN Hobgyang, WANG Gang, WANG Zizhuo, et al. Non-line-of-sight node localization based on semi-definite programming in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2012, 11(1): 108–116. doi: 10.1109/TWC.2011.110811.101739
    [15]
    NIU Haiqiang, OZANICH E, and GERSTOFT P. Ship localization in Santa Barbara channel using machine learning classifiers[J]. The Journal of the Acoustical Society of America, 2017, 142(5): EL455–EL460. doi: 10.1121/1.5010064
    [16]
    NIU Haiqiang, REEVES E, and GERSTOFT P. Source localization in an ocean waveguide using supervised machine learning[J]. The Journal of the Acoustical Society of America, 2017, 142(3): 1176–1188. doi: 10.1121/1.5000165
    [17]
    NIU Haiqiang, GONG Zaixiao, OZANICH E, et al. Deep-learning source localization using multi-frequency magnitude-only data[J]. The Journal of the Acoustical Society of America, 2019, 146(1): 211–222. doi: 10.1121/1.5116016
    [18]
    LIU Yining, NIU Haiqiang, and LI Zhenglin. A multi-task learning convolutional neural network for source localization in deep ocean[J]. The Journal of the Acoustical Society of America, 2020, 148(2): 873–883. doi: 10.1121/10.0001762
    [19]
    CHI Jing, LI Xiaolei, WANG Haozhong, et al. Sound source ranging using a feed-forward neural network trained with fitting-based early stopping[J]. The Journal of the Acoustical Society of America, 2019, 146(3): EL258–EL264. doi: 10.1121/1.5126115
    [20]
    LIU Yining, NIU Haiqiang, and LI Zhenglin. Source ranging using ensemble convolutional networks in the direct zone of deep water[J]. Chinese Physics Letters, 2019, 36(4): 044302. doi: 10.1088/0256-307X/36/4/044302
    [21]
    WANG Yun and PENG Hua. Underwater acoustic source localization using generalized regression neural network[J]. The Journal of the Acoustical Society of America, 2018, 143(4): 2321–2331. doi: 10.1121/1.5032311
    [22]
    邓晋, 潘安迪, 肖川, 等. 基于迁移学习的水声目标识别[J]. 计算机系统应用, 2020, 29(10): 255–261. doi: 10.15888/j.cnki.csa.007538

    DENG Jin, PAN Andi, XIAO Chuan, et al. Transfer learning for acoustic target recognition[J]. Computer Systems &Applications, 2020, 29(10): 255–261. doi: 10.15888/j.cnki.csa.007538
    [23]
    雷波, 何兆阳, 张瑞. 基于迁移学习的水下目标定位方法仿真研究[J]. 物理学报, 2021, 70(22): 183–192. doi: 10.7498/aps.70.20210277

    LEI Bo, HE Zhaoyang, and ZHANG Rui. Simulation study of underwater intruder localization based on transfer learning[J]. Acta Physica Sinica, 2021, 70(22): 183–192. doi: 10.7498/aps.70.20210277
    [24]
    LONG Mingsheng, WANG Jianmin, DING Guiguang, et al. Transfer feature learning with joint distribution adaptation[C]. 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 2200–2207.
    [25]
    龙明盛. 迁移学习问题与方法研究[D]. [博士论文], 清华大学, 2014.

    LONG Mingsheng. Transfer learning: Problems and methods[D]. [Ph. D. dissertation], Tsinghua University, 2014.
    [26]
    BYUN S H, VERLINDEN C M A, and SABRA K G. Blind deconvolution of shipping sources in an ocean waveguide[J]. The Journal of the Acoustical Society of America, 2017, 141(2): 797–807. doi: 10.1121/1.4976046
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (2050) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return