Citation: | LIN Jianghao, WU Zongze, LI Jiajun, XIE Shengli. Quality Prediction for Injection Molding Product Based on Broad Learning System[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1581-1590. doi: 10.11999/JEIT211414 |
[1] |
LI Xiaoli, HU Bin, and DU Ruxu. Predicting the parts weight in plastic injection molding using least squares support vector regression[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
|
[2] |
OGORODNYK O, LYNGSTAD O V, LARSEN L, et al. Prediction of Width and Thickness of Injection Molded Parts Using Machine Learning Methods[M]. KISHITA Y, MATSUMOTO M, INOUE M, et al. EcoDesign and Sustainability I. Singapore: Springer, 2021: 455–469.
|
[3] |
郑生荣, 辛勇, 杨国泰, 等. 人工神经网络在注塑参数预测中的应用[J]. 塑料工业, 2003, 31(10): 26–28,33. doi: 10.3321/j.issn:1005-5770.2003.10.009
ZHENG Shengrong, XIN Yong, YANG Guotai, et al. Application of artificial neural network in prediction of injection parameters[J]. China Plastics Industry, 2003, 31(10): 26–28,33. doi: 10.3321/j.issn:1005-5770.2003.10.009
|
[4] |
王博, 蔡安江, 孟广慧, 等. 采用组合算法的注塑制品翘曲变形预测[J]. 西安交通大学学报, 2020, 54(8): 84–90. doi: 10.7652/xjtuxb202008011
WANG Bo, CAI Anjiang, MENG Guanghui, et al. Warpage deformation prediction of injection products with combinatorial algorithm[J]. Journal of Xi’an Jiaotong University, 2020, 54(8): 84–90. doi: 10.7652/xjtuxb202008011
|
[5] |
季宁, 张卫星, 于洋洋, 等. 基于径向基函数神经网络和多岛遗传算法的注射成型质量控制与预测[J]. 工程塑料应用, 2020, 48(4): 62–68. doi: 10.3969/j.issn.1001-3539.2020.04.011
JI Ning, ZHANG Weixing, YU Yangyang, et al. Quality control and prediction of injection molding based on RBF neural network and MIGA[J]. Engineering Plastics Application, 2020, 48(4): 62–68. doi: 10.3969/j.issn.1001-3539.2020.04.011
|
[6] |
宋建, 陈广森, 陈敬福, 等. 基于特征选择和贝叶斯优化LightGBM的注塑制品尺寸预测[J]. 工程塑料应用, 2021, 49(8): 54–60. doi: 10.3969/j.issn.1001-3539.2021.08.010
SONG Jian, CHEN Guangsen, CHEN Jingfu, et al. Size prediction of injection molded products based on feature selection and Bayesian optimized LightGBM[J]. Engineering Plastics Application, 2021, 49(8): 54–60. doi: 10.3969/j.issn.1001-3539.2021.08.010
|
[7] |
刘永兴, 唐小琦, 钟靖龙, 等. 基于LightGBM的非对称风险注塑成型产品尺寸预测模型[J/OL]. 中国机械工程. http://kns.cnki.net/kcms/detail/42.1294.TH.20210913.1448.002.html, 2022.
LIU Yongxing, TANG Xiaoqi, ZHONG Jinglong, et al. Asymmetric risk injection molding product size prediction based on LightGBM[J/OL]. China Mechanical Engineering. http://kns.cnki.net/kcms/detail/42.1294.TH.20210913.1448.002.html, 2022.
|
[8] |
LIU Jiahuan, GUO Fei, HUANG Gao, et al. Defect detection of injection molding products on small datasets using transfer learning[J]. Journal of Manufacturing Processes, 2021, 70: 400–413. doi: 10.1016/j.jmapro.2021.08.034
|
[9] |
KIM E, CHO S, LEE B, et al. Fault detection and diagnosis using self-attentive convolutional neural networks for variable-length sensor data in semiconductor manufacturing[J]. IEEE Transactions on Semiconductor Manufacturing, 2019, 32(3): 302–309. doi: 10.1109/TSM.2019.2917521
|
[10] |
KIM G, CHOI J G, KU M, et al. A multimodal deep learning-based fault detection model for a plastic injection molding process[J]. IEEE Access, 2021, 9: 132455–132467. doi: 10.1109/ACCESS.2021.3115665
|
[11] |
CHEN C L P and LIU Zhulin. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 10–24. doi: 10.1109/tnnls.2017.2716952
|
[12] |
CHEN C L P, LIU Zhulin, and FENG Shuang. Universal approximation capability of broad learning system and its structural variations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(4): 1191–1204. doi: 10.1109/TNNLS.2018.2866622
|
[13] |
郑云飞, 陈霸东. 基于最小p-范数的宽度学习系统[J]. 模式识别与人工智能, 2019, 32(1): 51–57. doi: 10.16451/j.cnki.issn1003-6059.201901007
ZHENG Yunfei and CHEN Badong. Least p-norm based broad learning system[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(1): 51–57. doi: 10.16451/j.cnki.issn1003-6059.201901007
|