Advanced Search
Volume 44 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
XU Yuanchao, CAI Zhiming, KONG Xiaopeng. Classification of Ship Radiated Noise Based on Bi-Logarithmic Scale Spectrum and Convolutional Network[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1947-1955. doi: 10.11999/JEIT211407
Citation: XU Yuanchao, CAI Zhiming, KONG Xiaopeng. Classification of Ship Radiated Noise Based on Bi-Logarithmic Scale Spectrum and Convolutional Network[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1947-1955. doi: 10.11999/JEIT211407

Classification of Ship Radiated Noise Based on Bi-Logarithmic Scale Spectrum and Convolutional Network

doi: 10.11999/JEIT211407
  • Received Date: 2021-12-01
  • Accepted Date: 2022-04-02
  • Rev Recd Date: 2022-03-31
  • Available Online: 2022-04-12
  • Publish Date: 2022-06-21
  • The translation equivariance of convolutional layers are not compatible with the linear spectrum. Therefore, the convolutional networks can not carry the long-distance dependency of high-dimensional features. One bi-logarithmic spectrum feature is presented by this paper for classification of ship radiated noise. This bi-logarithmic spectrum rearranges the frequency points of the logarithmic spectrum to ensure the resolution of high frequencies, therefore the substantial deep convolutional network is not necessary. Considering on the prior knowledge that each row of the bi-logarithmic spectrum corresponding to the same one target, a convolutional network as well as an objective function are constructed. Then this network is trained and tested with DeepShip dataset to classify four types of marine vessels, and the results show that, with the same feature dimensions, the classification accuracy of the algorithm proposed by this paper is improved by 2.4% more than the convolutional network with the input feature of linear scale spectrum.
  • loading
  • [1]
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    [2]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [3]
    王念滨, 何鸣, 王红滨, 等. 适用于水下目标识别的快速降维卷积模型[J]. 哈尔滨工程大学学报, 2019, 40(7): 1327–1333. doi: 10.11990/jheu.201805113

    WANG Nianbin, HE Ming, WANG Hongbin, et al. A fast reduced-dimension convolution model for underwater target recognition[J]. Journal of Harbin Engineering University, 2019, 40(7): 1327–1333. doi: 10.11990/jheu.201805113
    [4]
    SHEN Sheng, YANG Honghui, LI Junhao, et al. Auditory inspired convolutional neural networks for ship type classification with raw hydrophone data[J]. Entropy, 2018, 20(12): 990. doi: 10.3390/e20120990
    [5]
    HU Gang, WANG Kejun, PENG Yuan, et al. Deep learning methods for underwater target feature extraction and recognition[J]. Computational Intelligence and Neuroscience, 2018, 2018: 1214301. doi: 10.1155/2018/1214301
    [6]
    LI Junhao and YANG Honghui. The underwater acoustic target timbre perception and recognition based on the auditory inspired deep convolutional neural network[J]. Applied Acoustics, 2021, 182: 108210. doi: 10.1016/j.apacoust.2021.108210
    [7]
    CHEN Yuechao and SHANG Jintao. Underwater target recognition method based on convolution autoencoder[C]. 2019 IEEE International Conference on Signal, Information and Data Processing, Chongqing, China, 2019: 1–5.
    [8]
    王念滨, 何鸣, 王红滨, 等. 基于卷积神经网络的水下目标特征提取方法[J]. 系统工程与电子技术, 2018, 40(6): 1197–1203. doi: 10.3969/j.issn.1001-506x.2018.06.02

    WANG Nianbin, HE Ming, WANG Hongbin, et al. Underwater target feature extraction method based on convolutional neural network[J]. Systems Engineering and Electronics, 2018, 40(6): 1197–1203. doi: 10.3969/j.issn.1001-506x.2018.06.02
    [9]
    CHEN Jie, HAN Bing, MA Xufeng, et al. Underwater target recognition based on multi-decision LOFAR spectrum enhancement: A deep-learning approach[J]. Future Internet, 2021, 13(10): 265. doi: 10.3390/FI13100265
    [10]
    ZHANG Qi, DA Lianglong, ZHANG Yanhou, et al. Integrated neural networks based on feature fusion for underwater target recognition[J]. Applied Acoustics, 2021, 182: 108261. doi: 10.1016/J.APACOUST.2021.108261
    [11]
    GOODFELLOW I, BENGIO Y, COURVILLE A, 赵申剑, 黎彧君, 符天凡, 等译. 深度学习[M]. 北京: 人民邮电出版社, 2017: 205–207.

    GOODFELLOW I, BENGIO Y, COURVILLE A, ZHAO Shenjian, LI Yujun, FU Tianfan, et al. translation. Deep Learning[M]. Beijing: Posts & Telecommunications Press, 2017: 205–207.
    [12]
    IRFAN M, ZHENG Jiangbin, ALI S, et al. DeepShip: An underwater acoustic benchmark dataset and a separable convolution based autoencoder for classification[J]. Expert Systems with Applications, 2021, 183: 115270. doi: 10.1016/J.ESWA.2021.115270
    [13]
    SCHÖRKHUBER C and KLAPURI A. Constant-Q transform toolbox for music processing[C]. The 7th Sound and Music Computing Conference, Barcelona, Spain, 2010.
    [14]
    LUO Wenjie, LI Yujia, URTASUN R, et al. Understanding the effective receptive field in deep convolutional neural networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 4905–4913.
    [15]
    UMESH S, COHEN L, and NELSON D. Fitting the Mel scale[C]. Proceedings of 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, Phoenix, USA, 1999: 217–220.
    [16]
    徐源超, 蔡志明. 水声目标分类算法性能评估[J]. 哈尔滨工程大学学报, 2020, 41(10): 1559–1565. doi: 10.11990/jheu.202007114

    XU Yuanchao and CAI Zhiming. Performance evaluation on the algorithm of underwater acoustic target classification[J]. Journal of Harbin Engineering University, 2020, 41(10): 1559–1565. doi: 10.11990/jheu.202007114
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (925) PDF downloads(129) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return