Citation: | XU Yuanchao, CAI Zhiming, KONG Xiaopeng. Classification of Ship Radiated Noise Based on Bi-Logarithmic Scale Spectrum and Convolutional Network[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1947-1955. doi: 10.11999/JEIT211407 |
[1] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
|
[2] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[3] |
王念滨, 何鸣, 王红滨, 等. 适用于水下目标识别的快速降维卷积模型[J]. 哈尔滨工程大学学报, 2019, 40(7): 1327–1333. doi: 10.11990/jheu.201805113
WANG Nianbin, HE Ming, WANG Hongbin, et al. A fast reduced-dimension convolution model for underwater target recognition[J]. Journal of Harbin Engineering University, 2019, 40(7): 1327–1333. doi: 10.11990/jheu.201805113
|
[4] |
SHEN Sheng, YANG Honghui, LI Junhao, et al. Auditory inspired convolutional neural networks for ship type classification with raw hydrophone data[J]. Entropy, 2018, 20(12): 990. doi: 10.3390/e20120990
|
[5] |
HU Gang, WANG Kejun, PENG Yuan, et al. Deep learning methods for underwater target feature extraction and recognition[J]. Computational Intelligence and Neuroscience, 2018, 2018: 1214301. doi: 10.1155/2018/1214301
|
[6] |
LI Junhao and YANG Honghui. The underwater acoustic target timbre perception and recognition based on the auditory inspired deep convolutional neural network[J]. Applied Acoustics, 2021, 182: 108210. doi: 10.1016/j.apacoust.2021.108210
|
[7] |
CHEN Yuechao and SHANG Jintao. Underwater target recognition method based on convolution autoencoder[C]. 2019 IEEE International Conference on Signal, Information and Data Processing, Chongqing, China, 2019: 1–5.
|
[8] |
王念滨, 何鸣, 王红滨, 等. 基于卷积神经网络的水下目标特征提取方法[J]. 系统工程与电子技术, 2018, 40(6): 1197–1203. doi: 10.3969/j.issn.1001-506x.2018.06.02
WANG Nianbin, HE Ming, WANG Hongbin, et al. Underwater target feature extraction method based on convolutional neural network[J]. Systems Engineering and Electronics, 2018, 40(6): 1197–1203. doi: 10.3969/j.issn.1001-506x.2018.06.02
|
[9] |
CHEN Jie, HAN Bing, MA Xufeng, et al. Underwater target recognition based on multi-decision LOFAR spectrum enhancement: A deep-learning approach[J]. Future Internet, 2021, 13(10): 265. doi: 10.3390/FI13100265
|
[10] |
ZHANG Qi, DA Lianglong, ZHANG Yanhou, et al. Integrated neural networks based on feature fusion for underwater target recognition[J]. Applied Acoustics, 2021, 182: 108261. doi: 10.1016/J.APACOUST.2021.108261
|
[11] |
GOODFELLOW I, BENGIO Y, COURVILLE A, 赵申剑, 黎彧君, 符天凡, 等译. 深度学习[M]. 北京: 人民邮电出版社, 2017: 205–207.
GOODFELLOW I, BENGIO Y, COURVILLE A, ZHAO Shenjian, LI Yujun, FU Tianfan, et al. translation. Deep Learning[M]. Beijing: Posts & Telecommunications Press, 2017: 205–207.
|
[12] |
IRFAN M, ZHENG Jiangbin, ALI S, et al. DeepShip: An underwater acoustic benchmark dataset and a separable convolution based autoencoder for classification[J]. Expert Systems with Applications, 2021, 183: 115270. doi: 10.1016/J.ESWA.2021.115270
|
[13] |
SCHÖRKHUBER C and KLAPURI A. Constant-Q transform toolbox for music processing[C]. The 7th Sound and Music Computing Conference, Barcelona, Spain, 2010.
|
[14] |
LUO Wenjie, LI Yujia, URTASUN R, et al. Understanding the effective receptive field in deep convolutional neural networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 4905–4913.
|
[15] |
UMESH S, COHEN L, and NELSON D. Fitting the Mel scale[C]. Proceedings of 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, Phoenix, USA, 1999: 217–220.
|
[16] |
徐源超, 蔡志明. 水声目标分类算法性能评估[J]. 哈尔滨工程大学学报, 2020, 41(10): 1559–1565. doi: 10.11990/jheu.202007114
XU Yuanchao and CAI Zhiming. Performance evaluation on the algorithm of underwater acoustic target classification[J]. Journal of Harbin Engineering University, 2020, 41(10): 1559–1565. doi: 10.11990/jheu.202007114
|