Advanced Search
Volume 45 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
WANG Haibin, GUAN Xin, YI Xiao, LI Shuangming. An Intention Recognition Method Based on Fuzzy Belief-Rule-Base[J]. Journal of Electronics & Information Technology, 2023, 45(3): 941-948. doi: 10.11999/JEIT211405
Citation: WANG Haibin, GUAN Xin, YI Xiao, LI Shuangming. An Intention Recognition Method Based on Fuzzy Belief-Rule-Base[J]. Journal of Electronics & Information Technology, 2023, 45(3): 941-948. doi: 10.11999/JEIT211405

An Intention Recognition Method Based on Fuzzy Belief-Rule-Base

doi: 10.11999/JEIT211405
Funds:  The National Defense Science and Technology Excellence Youth Talent Fund (2017-JCJQ-ZQ-003), The Taishan Scholar Engineering Special Fund (ts 201712072)
  • Received Date: 2021-12-01
  • Rev Recd Date: 2022-04-18
  • Available Online: 2022-04-25
  • Publish Date: 2023-03-10
  • Considering the deficiency that traditional intention recognition methods can only deal with certain types of uncertain information, a new information processing method of fuzzy Belief-Rule-Base (BRB) is proposed, which combines the advantages of fuzzy sets and Dempster-Shafer (DS) theory. Firstly, the connection relation of premise attributes is improved in the premise part of confidence rules, and fuzzy set segmentation is designed according to the statistical distribution characteristics of data sets. Cauchy distribution is selected as membership function to avoid the problem that confidence rules could not be activated effectively, which would lead to no effective output of the system. Secondly, the confidence distribution of different categories in the identification framework is fused, and the optimization model of rule weight and feature weight is established, and the input-output relationship between feature space and category space is constructed. On this basis, the matching degree and activation degree of the unknown intention data are calculated, and the recognition decision is made using the maximum confidence principle. Through experimental verification, sensitive parameter and interpretation of result, time complexity analysis, compared with other methods, the fuzzy belief-rule-base shows high accuracy rate, and effectiveness and reliability under the condition of small samples.
  • loading
  • [1]
    王闯, 李松, 姜浩博, 等. 防空反导智能战场态势估计研究[J]. 火力与指挥控制, 2020, 45(3): 7–13,21. doi: 10.3969/j.issn.1002-0640.2020.03

    WANG Chuang, LI Song, JIANG Haobo, et al. Research on intelligent battlefield situation assessment of air defense and anti-missile[J]. Fire Control &Command Control, 2020, 45(3): 7–13,21. doi: 10.3969/j.issn.1002-0640.2020.03
    [2]
    王海旺, 史红权, 赵晓哲. 目标意图识别方法综述[C]. 2020中国系统仿真与虚拟现实技术高层论坛论文集, 北京, 2020: 186–188.

    WANG Haiwang, SHI Hongquan, and ZHAO Xiaozhe. A summary of target intention identification methods[C]. 2020 China System Simulation and Virtual Reality Technology High-level Forum, Beijing, China, 2020: 186–188.
    [3]
    高杨, 李东生, 程泽新. 无人机分布式集群态势感知模型研究[J]. 电子与信息学报, 2018, 40(6): 1271–1278. doi: 10.11999/JEIT170877

    GAO Yang, LI Dongsheng, and CHENG Zexin. UAV Distributed swarm situation awareness model[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1271–1278. doi: 10.11999/JEIT170877
    [4]
    ZHOU Tongle, CHEN Mou, WANG Yuhui, et al. Information entropy-based intention prediction of aerial targets under uncertain and incomplete information[J]. Entropy, 2020, 22(3): 279. doi: 10.3390/e22030279
    [5]
    李伟生, 王三民, 王宝树. 基于计划识别的态势估计方法研究[J]. 电子与信息学报, 2006, 28(3): 532–536.

    LI Weisheng, WANG Sanmin, and WANG Baoshu. Study of situation assessment method based on plan recognition theory[J]. Journal of Electronics &Information Technology, 2006, 28(3): 532–536.
    [6]
    JIAO Lianmeng, PAN Quan, DENŒUX T, et al. Belief rule-based classification system: Extension of FRBCS in belief functions framework[J]. Information Sciences, 2015, 309: 26–49. doi: 10.1016/j.ins.2015.03.005
    [7]
    CHI Zheru, YAN Hong, and PHAM T. Fuzzy Algorithms with Applications to Image Processing and Pattern Recognition[M]. Singapore: World Scientific Publishing Co, 1996.
    [8]
    YANG Jianbo, LIU Jun, WANG Jin, et al. Belief rule-based inference methodology using the evidential reasoning approach–RIMER[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2006, 36(2): 266–285. doi: 10.1109/TSMCA.2005.851270
    [9]
    赵福均, 周志杰, 胡昌华, 等. 基于置信规则库和证据推理的空中目标意图识别方法[J]. 电光与控制, 2017, 24(8): 15–19,50. doi: 10.3969/j.issn.1671-637X.2017.08.004

    ZHAO Fujun, ZHOU Zhijie, HU Changhua, et al. Aerial target intention recognition approach based on belief-rule-base and evidential reasoning[J]. Electronics Optics &Control, 2017, 24(8): 15–19,50. doi: 10.3969/j.issn.1671-637X.2017.08.004
    [10]
    CHANG Leilei, ZHOU Zhijie, YOU Yuan, et al. Belief rule based expert system for classification problems with new rule activation and weight calculation procedures[J]. Information Sciences, 2016, 336: 75–91. doi: 10.1016/j.ins.2015.12.009
    [11]
    ZHOU Zhijie, HU Guanyu, HU Changhua, et al. A survey of belief rule-base expert system[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2019, 51(8): 4944–4958. doi: 10.1109/TSMC.2019.2944893
    [12]
    UTKIN L V. An imprecise extension of SVM-based machine learning models[J]. Neurocomputing, 2019, 331: 18–32. doi: 10.1016/j.neucom.2018.11.053
    [13]
    XUE Junjie, ZHU Jie, XIAO Jiyang, et al. Panoramic convolutional long short-term memory networks for combat intension recognition of aerial targets[J]. IEEE Access, 2020, 8: 183312–183323. doi: 10.1109/ACCESS.2020.3025926
    [14]
    ACI M and AVCI M. K nearest neighbor reinforced expectation maximization method[J]. Expert Systems with Applications, 2011, 38(10): 12585–12591. doi: 10.1016/j.eswa.2011.04.046
    [15]
    张肃, 程启月, 解瑶, 等. 不确定空情信息条件下的意图识别方法[J]. 空军工程大学学报(自然科学版), 2008, 9(3): 50–53. doi: 10.3969/j.issn.1009-3516.2008.03.012

    ZHANG Su, CHENG Qiyue, XIE Yao, et al. A method of inference intention with uncertain aerial information[J]. Journal of Air Force Engineering University (Natural Science Edition), 2008, 9(3): 50–53. doi: 10.3969/j.issn.1009-3516.2008.03.012
    [16]
    AFSHAR S, MOSLEH M, and KHEYRANDISH M. Presenting a new multiclass classifier based on learning automata[J]. Neurocomputing, 2013, 104: 97–104. doi: 10.1016/j.neucom.2012.10.005
    [17]
    ZHUANG Jinhui, YE Jifeng, CHEN Nannan, et al. Extended belief rule-base optimization base on clustering tree and parameter optimization[J]. IEEE Access, 2021, 9: 12533–12544. doi: 10.1109/ACCESS.2021.3051001
    [18]
    DEL AMO A, MONTERO J, FERNANDEZ A, et al. Spectral fuzzy classification: an application[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2002, 32(1): 42–48. doi: 10.1109/TSMCC.2002.1009135
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (714) PDF downloads(124) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return