Advanced Search
Volume 45 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
NI Shaojie, YUE Yang, ZUO Yong, LIU Wenxiang, XIAO Wei, YE Xiaozhou. The Status Quo and Prospect of Satellite Network Routing Technology[J]. Journal of Electronics & Information Technology, 2023, 45(2): 383-395. doi: 10.11999/JEIT211393
Citation: NI Shaojie, YUE Yang, ZUO Yong, LIU Wenxiang, XIAO Wei, YE Xiaozhou. The Status Quo and Prospect of Satellite Network Routing Technology[J]. Journal of Electronics & Information Technology, 2023, 45(2): 383-395. doi: 10.11999/JEIT211393

The Status Quo and Prospect of Satellite Network Routing Technology

doi: 10.11999/JEIT211393
Funds:  The National Natural Science Foundation of China (U20A20193)
  • Received Date: 2021-12-01
  • Rev Recd Date: 2022-04-23
  • Available Online: 2022-04-28
  • Publish Date: 2023-02-07
  • Different from terrestrial fixed communication networks, new challenges are brought to the design of routing protocols and algorithms for satellite Internet because of the characteristics of highly dynamic nodes, limited on-board processing capabilities and periodic changes of network topology in satellite networks.The routing technology proposed by the academic community for satellite networks is sorted out comprehensively and the future research hotspots of satellite routing technology is given in this paper. Firstly, the architecture of the satellite network and the main routing protocols currently used in the satellite communication system are introduced, and the routing problem of the satellite optical communication network is also briefly introduced. Secondly, the routing algorithms are classified into centralized satellite routing, distributed satellite routing and hybrid satellite routing according to the management method of satellite nodes and the routing table generation method.Later the representative results of various satellite routing methods are introduced and their optimization goals and applicable scenarios are summarized in detail. Then, how to choose the appropriate satellite network scenarios and network requirements under different satellite network scenarios is summarized. Finally, the challenges faced by the current satellite routing technology and future research hotspots are described, and the current mainstream satellite network simulation platforms are introduced in the appendix.
  • loading
  • [1]
    JAEOOK L and SUN K. Satellite over satellite (SOS) network: A novel architecture for satellite network[C]. IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Tel Aviv, Israel, 2000: 315–321.
    [2]
    卢勇, 赵有健, 孙富春, 等. 卫星网络路由技术[J]. 软件学报, 2014, 25(5): 1085–1100. doi: 10.13328/j.cnki.jos.004581

    LU Yong, ZHAO Youjian, Sun Fuchun, et al. Routing techniques on satellite networks[J]. Journal of Software, 2014, 25(5): 1085–1100. doi: 10.13328/j.cnki.jos.004581
    [3]
    朱立东, 张勇, 贾高一. 卫星互联网路由技术现状及展望[J]. 通信学报, 2021, 42(8): 33–42. doi: 10.11959/j.issn.1000-436x.2021166

    ZHU Lidong, ZHANG Yong, and JIA Gaoyi. Current status and future prospects of routing technologies for satellite Internet[J]. Journal on Communications, 2021, 42(8): 33–42. doi: 10.11959/j.issn.1000-436x.2021166
    [4]
    ALAGOZ F, KORCAK O, and JAMALIPOUR A. Exploring the routing strategies in next-generation satellite networks[J]. IEEE Wireless Communications, 2007, 14(3): 79–88. doi: 10.1109/MWC.2007.386616
    [5]
    李仁见, 陈立前, 王戟. IP及其路由技术在星载计算机中的应用[J]. 计算机工程, 2007, 33(14): 110–112. doi: 10.3969/j.issn.1000-3428.2007.14.038

    LI Renjian, CHEN Liqian, and WANG Ji. Application of IP protocol and its routing technology in onboard computer[J]. Computer Engineering, 2007, 33(14): 110–112. doi: 10.3969/j.issn.1000-3428.2007.14.038
    [6]
    DENG Dexin, ZHENG Zengwei, and HUO Meimei. A survey: The progress of routing technology in satellite communication networks[C]. The 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), Jilin, China, 2011: 286–291.
    [7]
    SPYROPOULOS T, PSOUNIS K, and RAGHAVENDRA C S. Efficient routing in intermittently connected mobile networks: The single-copy case[J]. IEEE/ACM Transactions on Networking, 2008, 16(1): 63–76. doi: 10.1109/TNET.2007.897962
    [8]
    WANG Hezhe, WANG Huiqiang, TAN Jing, et al. A delay tolerant network routing policy based on optimized control information generation method[J]. IEEE Access, 2018, 6: 51791–51803. doi: 10.1109/ACCESS.2018.2869380
    [9]
    XI Yong, CHUAH M, and CHANG K. Performance evaluation of a power management scheme for disruption tolerant network[J]. Mobile Networks and Applications, 2007, 12(5/6): 370–380. doi: 10.1007/s11036-008-0046-4
    [10]
    BURGESS J, GALLAGHER B, JENSEN D, et al. MaxProp: Routing for vehicle-based disruption-tolerant networks[C]. IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications, Barcelona, Spain, 2006: 1–11.
    [11]
    SPYROPOULOS T, PSOUNIS K, and RAGHAVENDRA C S. Spray and wait: An efficient routing scheme for intermittently connected mobile networks[C]. The 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking, Philadelphia, USA, 2005: 252–259.
    [12]
    DALY E M and HAAHR M. Social network analysis for routing in disconnected delay-tolerant MANETs[C]. The 8th ACM International Symposium on Mobile ad Hoc Networking and Computing, Montreal, Canada, 2007: 32–40.
    [13]
    SAXENA D, RAYCHOUDHURY V, SURI N, et al. Named data networking: A survey[J]. Computer Science Review, 2016, 19: 15–55. doi: 10.1016/j.cosrev.2016.01.001
    [14]
    CHEN Qingxia, XIE Renchao, YU F R, et al. Transport control strategies in named data networking: A survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 2052–2083. doi: 10.1109/COMST.2016.2528164
    [15]
    HOQUE A K M M, AMIN S O, ALYYAN A, et al. NLSR: Named-data link state routing protocol[C]. The 3rd ACM SIGCOMM Workshop on Information-Centric Networking, Hong Kong, China, 2013: 15–20.
    [16]
    RINALDI F, MAATTANEN H L, TORSNER J, et al. Non-terrestrial networks in 5G & beyond: A survey[J]. IEEE Access, 2020, 8: 165178–165200. doi: 10.1109/ACCESS.2020.3022981
    [17]
    KAUSHAL H and KADDOUM G. Optical communication in space: Challenges and mitigation techniques[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 57–96. doi: 10.1109/COMST.2016.2603518
    [18]
    WEN Guoli, ZHANG Qi, WANG Houtian, et al. An ant colony algorithm based on cross-layer design for routing and wavelength assignment in optical satellite networks[J]. China Communications, 2017, 14(8): 63–75. doi: 10.1109/CC.2017.8014348
    [19]
    SUN Xue and CAO Suzhi. A routing and wavelength assignment algorithm based on two types of LEO constellations in optical satellite networks[J]. Journal of Lightwave Technology, 2020, 38(8): 2106–2113. doi: 10.1109/JLT.2020.2965185
    [20]
    HSU C C, CHO H J, and FANG S C. Solving routing and wavelength assignment problem with maximum edge-disjoint paths[J]. Journal of Industrial and Management Optimization, 2017, 13(2): 1065–1084. doi: 10.3934/jimo.2016062
    [21]
    BHANJA U and MISHRA D. Quality of service aware fuzzy dynamic routing and wavelength assignment technique in all optical networks[J]. Photonic Network Communications, 2017, 34(2): 155–169. doi: 10.1007/s11107-017-0689-9
    [22]
    QIN Panke, WU Jingru, LI Xudong, et al. Multipoint to multipoint routing and wavelength assignment in multi-domain optical networks[J]. Physica A:Statistical Mechanics and its Applications, 2018, 490: 1454–1460. doi: 10.1016/j.physa.2017.08.112
    [23]
    杨乾远, 孙晖, 马拥华, 等. 5G基站前传和中传的无线光通信方案设计[J]. 光通信技术, 2019, 43(9): 23–26. doi: 10.13921/j.cnki.issn1002-5561.2019.09.005

    YANG Qianyuan, SUN Hui, MA Yonghua, et al. Design of free space optical communication scheme for forward and intermediate transmission of 5G base station[J]. Optical Communication Technology, 2019, 43(9): 23–26. doi: 10.13921/j.cnki.issn1002-5561.2019.09.005
    [24]
    MARTÍN, TROIA S, HERNÁNDEZ J A, et al. Machine learning-based routing and wavelength assignment in software-defined optical networks[J]. IEEE Transactions on Network and Service Management, 2019, 16(3): 871–883. doi: 10.1109/TNSM.2019.2927867
    [25]
    刘晔祺. 卫星动态光网络的路由和资源管理方法研究[D]. [博士论文], 北京邮电大学, 2021.

    LIU Yeqi. Research on routing and resource management of dynamic optical satellite networks[D]. [Ph. D. dissertation], Beijing University of Posts and Telecommunications, 2021.
    [26]
    文国莉. 空间光网络路由与资源管理技术研究[D]. [博士论文], 北京邮电大学, 2018.

    WEN Guoli. Research on routing and resource management technology for space optical networks[D]. [Ph. D. dissertation], Beijing University of Posts and Telecommunications, 2018.
    [27]
    MAURYA R K, THANGARAJ J, and PRIYE V. Dynamic routing and wavelength assignment using cost based heuristics in WDM optical networks[J]. Wireless Personal Communications, 2020, 115(2): 971–992. doi: 10.1007/s11277-020-07607-5
    [28]
    CHANG H S, KIM B W, LEE C G, et al. FSA-based link assignment and routing in low-earth orbit satellite networks[J]. IEEE Transactions on Vehicular Technology, 1998, 47(3): 1037–1048. doi: 10.1109/25.704858
    [29]
    GRAGOPOULOS I, PAPAPETROU E, and PAVLIDOU F N. Performance study of adaptive routing algorithms for LEO satellite constellations under Self-Similar and Poisson traffic[J]. Space Communications, 2000, 16(1): 15–22.
    [30]
    CHEN Jing and JAMALIPOUR A. An adaptive path routing scheme for satellite IP networks[J]. International Journal of Communication Systems, 2003, 16(1): 5–21. doi: 10.1002/dac.577
    [31]
    ZHA Peng, LONG Chengnian, WU Jing, et al. Satellite lifetime predicted greedy perimeter stateless routing protocol for LEO satellite network[C]. The 2020 Chinese Automation Congress (CAC), Shanghai, China, 2020: 5102–5107.
    [32]
    RAO Yuan and WANG Ruchuan. Performance of QoS routing using genetic algorithm for Polar-orbit LEO satellite networks[J]. AEU-International Journal of Electronics and Communications, 2011, 65(6): 530–538. doi: 10.1016/j.aeue.2010.08.008
    [33]
    RAO Yuan and WANG Ruchuan. QoS routing based on mobile agent for LEO satellite IP networks[J]. The Journal of China Universities of Posts and Telecommunications, 2009, 16(6): 57–63. doi: 10.1016/S1005-8885(08)60289-7
    [34]
    HUI Xu, FEI Huang, and WU Shiqi. A distributed QoS routing based on ant algorithm for LEO satellite network[J]. Journal of Electronics (China) , 2007, 24(6): 765–771. doi: 10.1007/s11767-006-0040-6
    [35]
    BAI Jianjun, LU Xicheng, LU Zexin, et al. Compact explicit multi-path routing for LEO satellite networks[C]. The HPSR 2005 Workshop on High Performance Switching and Routing, Hong Kong, China, 2005: 386–390.
    [36]
    FRANCK L and MARAL G. Static and adaptive routing in ISL networks from a constellation perspective[J]. International Journal of Satellite Communications, 2002, 20(6): 455–475. doi: 10.1002/sat.736
    [37]
    EKICI E, AKYILDIZ I F, and BENDER M D. A distributed routing algorithm for datagram traffic in LEO satellite networks[J]. IEEE/ACM Transactions on Networking, 2001, 9(2): 137–147. doi: 10.1109/90.917071
    [38]
    TALEB T, MASHIMO D, JAMALIPOUR A, et al. Explicit load balancing technique for NGEO satellite IP networks with on-board processing capabilities[J]. IEEE/ACM Transactions on Networking, 2009, 17(1): 281–293. doi: 10.1109/TNET.2008.918084
    [39]
    RAO Yuan, WANG Ruchuan, and XU Xiaolong. Load balancing routing for single-layered satellite networks[J]. The Journal of China Universities of Posts and Telecommunications, 2010, 17(2): 92–99. doi: 10.1016/S1005-8885(09)60453-2
    [40]
    LIU Liang, ZHANG Tao, and LU Yong. A novel adaptive routing algorithm for delay-sensitive service in multihop LEO satellite network[J]. KSII Transactions on Internet and Information Systems, 2016, 10(8): 3551–3567. doi: 10.3837/tiis.2016.08.007
    [41]
    GAO Yang, ZHANG Yong, LI Kun, et al. Joint multi-QoS and energy saving routing for LEO satellite network[J]. The Journal of China Universities of Posts and Telecommunications, 2019, 26(3): 25–34. doi: 10.19682/j.cnki.1005-8885.2019.0015
    [42]
    KORÇAK Ö and ALAGÖZ F. Priority-based adaptive shortest path routing in IP over LEO satellite networks[C]. The Proc of 23rd AIAA International Communications Satelllite Systems Conference, Monterey, USA, 2005: 1–9.
    [43]
    LIU Wei, TAO Ying, and LIU Liang. Load-balancing routing algorithm based on segment routing for traffic return in LEO satellite networks[J]. IEEE Access, 2019, 7: 112044–112053. doi: 10.1109/ACCESS.2019.2934932
    [44]
    NA Zhenyu, PAN Zheng, LIU Xin, et al. Distributed routing strategy based on machine learning for LEO satellite network[J]. Wireless Communications and Mobile Computing, 2018, 2018: 3026405. doi: 10.1155/2018/3026405
    [45]
    LIU Peilong, CHEN Hongyu, WEI Songjie, et al. Hybrid-traffic-detour based load balancing for onboard routing in LEO satellite networks[J]. China Communications, 2018, 15(6): 28–41. doi: 10.1109/CC.2018.8398222
    [46]
    KARAPANTAZIS S, PAPAPETROU E, and PAVLIDOU F N. Multiservice on-demand routing in LEO satellite networks[J]. IEEE Transactions on Wireless Communications, 2009, 8(1): 107–112. doi: 10.1109/TWC.2009.080334
    [47]
    DAI Cuiqin, LIAO Guangyan, and CHEN Qianbin. Service-oriented routing with Markov space-time graph in low earth orbit satellite networks[J]. Transactions on Emerging Telecommunications Technologies, 2021, 32(7): e4072. doi: 10.1002/ett.4072
    [48]
    QI Xiaoxin, ZHANG Bing, and QIU Zhiliang. A distributed survivable routing algorithm for mega-constellations with inclined orbits[J]. IEEE Access, 2020, 8: 219199–219213. doi: 10.1109/ACCESS.2020.3041346
    [49]
    GUO Zhe and YAN Zheng. A weighted semi-distributed routing algorithm for LEO satellite networks[J]. Journal of Network and Computer Applications, 2015, 58: 1–11. doi: 10.1016/j.jnca.2015.08.015
    [50]
    ZHANG Yi, ZHOU Quan, LI Jun, et al. The generation and update algorithm of routing table in satellite network[C]. 2015 IEEE International Conference on Communication Problem-Solving (ICCP), Guilin, China, 2015: 619–622.
    [51]
    LIU Ziluan, LI Jiangsheng, WANG Yanru, et al. HGL: A hybrid global-local load balancing routing scheme for the Internet of Things through satellite networks[J]. International Journal of Distributed Sensor Networks, 2017, 13(3): 1–16. doi: 10.1177/1550147717692586
    [52]
    JIANG Lei, FENG Jing, SHEN Ye, et al. Fast recovery routing algorithm for software defined network based operationally responsive space satellite networks[J]. KSII Transactions on Internet and Information Systems, 2016, 10(7): 2936–2951. doi: 10.3837/tiis.2016.07.004
    [53]
    DAI Shiyue, RUI Lanlan, CHEN Shiyou, et al. A distributed congestion control routing protocol based on traffic classification in LEO satellite networks[C]. The 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), Bordeaux, France, 2021: 523–529.
    [54]
    LIANG Yonglin and QIU Lirong. Network traffic prediction based on SVR improved by chaos theory and ant colony optimization[J]. International Journal of Future Generation Communication and Networking, 2015, 8(1): 69–78. doi: 10.14257/ijfgcn.2015.8.1.08
    [55]
    胡浪. LEO卫星网络中基于流量预测的多代理负载均衡与OoS路由研究[D]. [硕士论文], 北京邮电大学, 2019

    HU Lang. Multi-agent load balancing and QoS routing based on traffic prediction[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2019.
    [56]
    张连城. 卫星网络路由协议研究与实现[D]. [硕士论文], 西安电子科技大学, 2017.

    ZHANG Liancheng. Research and implementation of satellite network routing protocol[D]. [Master dissertation], Xidian University, 2017.
    [57]
    秦嘉雯. 基于故障检测的卫星网络抗毁路由研究及验证[D]. [硕士论文], 北京邮电大学, 2020.

    QIN Jiawen. Research and verification of satellite network anti-destructive routing based on fault detection[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2020.
    [58]
    王慧文. 基于深度强化学习的低轨卫星路由策略研究[D]. [硕士论文], 北京邮电大学, 2020.

    WANG Huiwen. Routing strategy for LEO satellite network based on deep reinforcement learning[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2020.
    [59]
    罗泽耀. 天地一体化网络下基于机器学习的路由技术研究[D]. [硕士论文], 电子科技大学, 2021.

    LUO Zeyao. Research of routing technology based on machine learning in integrated satellite-terrestrial information network[D]. [Master dissertation], University of Electronic Science and Technology of China, 2021.
    [60]
    AKYILDIZ I F, EKICI E, and BENDER M D. MLSR: A novel routing algorithm for multilayered satellite IP networks[J]. IEEE/ACM Transactions on Networking, 2002, 10(3): 411–424. doi: 10.1109/TNET.2002.1012371
    [61]
    CHEN Chao and EKICI E. A routing protocol for hierarchical LEO/MEO satellite IP networks[J]. Wireless Networks, 2005, 11(4): 507–521. doi: 10.1007/s11276-005-1772-1
    [62]
    BAYHAN S, GÜR G, and ALAGÖZ F. Performance of delay-sensitive traffic in multi-layered satellite IP networks with on-board processing capability[J]. International Journal of Communication Systems, 2007, 20(12): 1367–1389. doi: 10.1002/dac.874
    [63]
    LIU Heyu and SUN Fuchun. Routing for predictable multi-layered satellite networks[J]. Science China Information Sciences, 2013, 56(11): 1–18. doi: 10.1007/s11432-013-5014-3
    [64]
    周云晖. 卫星网络QoS路由协议及其优化理论研究[D]. [博士论文], 清华大学, 2007.

    ZHOU Yunhui. A novel QoS routing protocol for satellite networks and its optimization[D]. [Ph. D. dissertation], Tsinghua University, 2007.
    [65]
    ZHOU Yunhui, SUN Fuchun, and ZHANG Bo. A novel QoS routing protocol for LEO and MEO satellite networks[J]. International Journal of Satellite Communications and Networking, 2007, 25(6): 603–617. doi: 10.1002/sat.892
    [66]
    BERTAUX L, MEDJIAH S, BERTHOU P, et al. Software defined networking and virtualization for broadband satellite networks[J]. IEEE Communications Magazine, 2015, 53(3): 54–60. doi: 10.1109/MCOM.2015.7060482
    [67]
    XU Shuang, WANG Xingwei, and HUANG Min. Software-defined next-generation satellite networks: Architecture, challenges, and solutions[J]. IEEE Access, 2018, 6: 4027–4041. doi: 10.1109/ACCESS.2018.2793237
    [68]
    LI Taixin, ZHOU Huachun, LUO Hongbin, et al. SERvICE: A software defined framework for integrated space-terrestrial satellite communication[J]. IEEE Transactions on Mobile Computing, 2018, 17(3): 703–716. doi: 10.1109/TMC.2017.2732343
    [69]
    刘莹莹. 基于SDN的卫星网络路由算法研究[D]. [硕士论文], 北京邮电大学, 2020.

    LIU Yingying. Research on satellite network routing algorithm based on SDN[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2020.
    [70]
    杨林瑶, 韩双双, 王晓, 等. 网络系统实验平台: 发展现状及展望[J]. 自动化学报, 2019, 45(9): 1637–1654. doi: 10.16383/j.aas.c180728

    YANG Linyao, HAN Shuangshuang, WANG Xiao, et al. Computational experiment platforms for networks: The state of the art and prospect[J]. Acta Automatica Sinica, 2019, 45(9): 1637–1654. doi: 10.16383/j.aas.c180728
    [71]
    KASSING S, BHATTACHERJEE D, ÁGUAS A B, et al. Exploring the "Internet from space" with Hypatia[C]. The ACM Internet Measurement Conference, New York, USA, 2020: 214–229.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(3)

    Article Metrics

    Article views (2572) PDF downloads(804) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return