Citation: | GAO Yuan, FANG Hai, ZHAO Yang, YANG Xu. A Satellite Edge Network Service Function Chain Deployment Method Based on Natural Gradient Actor-Critic Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2023, 45(2): 455-463. doi: 10.11999/JEIT211384 |
[1] |
ZHANG Jiaxin, ZHANG Xing, WANG Peng, et al. Double-edge intelligent integrated satellite terrestrial networks[J]. China Communications, 2020, 17(9): 128–146. doi: 10.23919/JCC.2020.09.011
|
[2] |
王鹏, 张佳鑫, 张兴, 等. 低轨卫星智能多接入边缘计算网络: 需求、架构、机遇与挑战[J]. 移动通信, 2021, 45(5): 35–46. doi: 10.3969/j.issn.1006-1010.2021.05.007
WANG Peng, ZHANG Jiaxin, ZHANG Xing, et al. Low earth orbit satellite intelligent multi-access edge computing networks: Requirements, architecture, opportunities and challenges[J]. Mobile Communications, 2021, 45(5): 35–46. doi: 10.3969/j.issn.1006-1010.2021.05.007
|
[3] |
唐琴琴, 谢人超, 刘旭, 等. 融合MEC的星地协同网络: 架构、 关键技术与挑战[J]. 通信学报, 2020, 41(4): 162–181. doi: 10.11959/j.issn.1000-436x.2020082
TANG Qinqin, XIE Renchao, LIU Xu, et al. MEC enabled satellite-terrestrial network: Architecture, key technique and challenge[J]. Journal on Communications, 2020, 41(4): 162–181. doi: 10.11959/j.issn.1000-436x.2020082
|
[4] |
LI Guanglei, ZHOU Huachun, FENG Bohan, et al. Horizontal-based orchestration for multi-domain SFC in SDN/NFV-enabled satellite/terrestrial networks[J]. China Communications, 2018, 15(5): 77–91. doi: 10.1109/cc.2018.8387988
|
[5] |
WANG Guangchao, ZHOU Sheng, ZHANG Shan, et al. SFC-based service provisioning for reconfigurable space-air-ground integrated networks[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(7): 1478–1489. doi: 10.1109/JSAC.2020.2986851
|
[6] |
王婷, 黄昊楠, 张兴, 等. 空天地一体化网络基于服务功能链的资源分配[J]. 无线电通信技术, 2021, 47(5): 611–617. doi: 10.3969/j.issn.1003-3114.2021.05.014
WANG Ting, HUANG Haonan, ZHANG Xing, et al. Resource allocation based on service function chain in space-air-ground integrated networks[J]. Radio Communications Technology, 2021, 47(5): 611–617. doi: 10.3969/j.issn.1003-3114.2021.05.014
|
[7] |
SHI Keyi, ZHANG Xiushe, ZHANG Shun, et al. Time-expanded graph based energy-efficient delay-bounded multicast over satellite networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 10380–10384. doi: 10.1109/TVT.2020.2988023
|
[8] |
邱航, 汤红波, 游伟. 基于深度Q网络的在线服务功能链部署方法[J]. 电子与信息学报, 2021, 43(11): 3122–3130. doi: 10.11999/JEIT201009
QIU Hang, TANG Hongbo, and YOU Wei. Online service function chain deployment method based on deep Q network[J]. Journal of Electronics &Information Technology, 2021, 43(11): 3122–3130. doi: 10.11999/JEIT201009
|
[9] |
唐伦, 曹睿, 廖皓, 等. 基于深度强化学习的服务功能链可靠部署算法[J]. 电子与信息学报, 2020, 42(12): 2931–2938. doi: 10.11999/JEIT190969
TANG Lun, CAO Rui, LIAO Hao, et al. Reliable deployment algorithm of service function chain based on deep reinforcement learning[J]. Journal of Electronics &Information Technology, 2020, 42(12): 2931–2938. doi: 10.11999/JEIT190969
|
[10] |
LI Taixin, ZHOU Huachun, LUO Hongbin, et al. Service function chain in small satellite-based software defined satellite networks[J]. China Communications, 2018, 15(3): 157–167. doi: 10.1109/CC.2018.8331999
|
[11] |
YANG Huiting, LIU Wei, LI Hongyan, et al. Maximum flow routing strategy for space information network with service function constraints[J]. IEEE Transactions on Wireless Communications, 2022, 21(5): 2903–2923. doi: 10.1109/TWC.2021.3116983
|
[12] |
GAO Xiangqiang, LIU Rongke, and KAUSHIK A. Service chaining placement based on satellite mission planning in ground station networks[J]. IEEE Transactions on Network and Service Management, 2021, 18(3): 3049–3063. doi: 10.1109/TNSM.2020.3045432
|
[13] |
QU Kaige, ZHUANG Weihua, YE Qiang, et al. Dynamic flow migration for embedded services in SDN/NFV-enabled 5G core networks[J]. IEEE Transactions on Communications, 2020, 68(4): 2394–2408. doi: 10.1109/TCOMM.2020.2968907
|
[14] |
ZHOU Zhi, WU Qiong, and CHEN Xu. Online orchestration of cross-edge service function chaining for cost-efficient edge computing[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(8): 1866–1880. doi: 10.1109/JSAC.2019.2927070
|
[15] |
ZHENG Gao, TSIOPOULOS A, and FRIDERIKOS V. Optimal VNF chains management for proactive caching[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6735–6748. doi: 10.1109/TWC.2018.2863685
|
[16] |
KARIMZADEH-FARSHBAFAN M, SHAH-MANSOURI V, and NIYATO D. A dynamic reliability-aware service placement for Network Function Virtualization (NFV)[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(2): 318–333. doi: 10.1109/JSAC.2019.2959196
|
[17] |
WEI Yifei, YU F R, SONG Mei, et al. Joint optimization of caching, computing, and radio resources for fog-enabled IoT using natural actor–critic deep reinforcement learning[J]. IEEE Internet of Things Journal, 2019, 6(2): 2061–2073. doi: 10.1109/JIOT.2018.2878435
|
[18] |
BHATNAGAR S, SUTTON R, GHAVAMZADEH M, et al. Natural actor-critic algorithms[J]. Automatica, 2009, 45(11): 2471–2482. doi: 10.1016/j.automatica.2009.07.008
|
[19] |
WANG Lingxiao, CAI Qi, YANG Zhuoran, et al. . Neural policy gradient methods: Global optimality and rates of convergence[C]. The 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020: 1–46.
|
[20] |
吴琦, 郭孟泽, 朱立东. 大规模低轨卫星网络移动性管理方案[J]. 中兴通讯技术, 2021, 27(5): 28–35. doi: 10.12142/ZTETJ.202105007
WU Qi, GUO Mengze, and ZHU Lidong. Large-scale low earth orbit satellite network mobility management scheme[J]. ZTE Technology Journal, 2021, 27(5): 28–35. doi: 10.12142/ZTETJ.202105007
|