Advanced Search
Volume 45 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
SUN Dajun, MING Wanting, ZHANG Jucheng. Research on Acquisition and Tracking Technology Based on Underwater Continuous Signal[J]. Journal of Electronics & Information Technology, 2023, 45(2): 567-575. doi: 10.11999/JEIT211376
Citation: SUN Dajun, MING Wanting, ZHANG Jucheng. Research on Acquisition and Tracking Technology Based on Underwater Continuous Signal[J]. Journal of Electronics & Information Technology, 2023, 45(2): 567-575. doi: 10.11999/JEIT211376

Research on Acquisition and Tracking Technology Based on Underwater Continuous Signal

doi: 10.11999/JEIT211376
Funds:  The National Natural Science Foundation of China (61901135)
  • Received Date: 2021-11-30
  • Rev Recd Date: 2022-03-28
  • Available Online: 2022-04-07
  • Publish Date: 2023-02-07
  • Considering the problem of real-time measurement of position and transmission of charge information in the recovery and guidance process of underwater high speed submersible, the acquisition and tracking technology based on the underwater continuous wave system is proposed. Continuous wave system is used to realize synchronous resolution of ranging and communication. The data acquisition time is compressed by parallel processing structure, and the optimal loop tracking strategy suitable for underwater acoustic environment and high dynamic background is designed based on the principle of phase-locked loop. From the theoretical simulation and Songhua Lake test results, the capture time of the algorithm is shortened from 83.87 s of the traditional matching algorithm to 0.66 s, and the calculation amount is reduced to 2.36 % of the time domain algorithm. Signal tracking technology has good performance under both high speed constant speed model and acceleration model. From the perspective of communication, the tracking algorithm can transmit data accurately. From the perspective of parameter estimation, the parameter accuracy based on tracking results changes slowly with the speed, but the traditional detection accuracy decreases with the increase of speed.This method achieves accurate Doppler estimation, and ensures the continuity and stability of ranging and communication. It is of great significance to the real-time recovery guidance of underwater high speed submersible.
  • loading
  • [1]
    SINGH H, BELLINGHAM J G, HOVER F, et al. Docking for an autonomous ocean sampling network[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 498–514. doi: 10.1109/48.972084
    [2]
    REGO F and PASCOAL A. Cooperative single-beacon multiple AUV navigation under stringent communication bandwidth constraints[J]. IFAC-PapersOnLine, 2021, 54(16): 216–223. doi: 10.1016/j.ifacol.2021.10.096
    [3]
    赵蕊, 许建. 自主式水下航行器水下回收融合引导技术方案及算法[J]. 中国舰船研究, 2022, 17(1): 212–220. doi: 10.19693/j.issn.1673-3185.02318

    ZHAO Rui and XU Jian. Fusion guiding technology solution and algorithm for Underwater docking of autonomous underwater vehicles[J]. Chinese Journal of Ship Research, 2022, 17(1): 212–220. doi: 10.19693/j.issn.1673-3185.02318
    [4]
    郑荣, 宋涛, 孙庆刚, 等. 自主式水下机器人水下对接技术综述[J]. 中国舰船研究, 2018, 13(6): 43–49,65. doi: 10.19693/j.issn.1673-3185.01182

    ZHENG Rong, SONG Tao, SUN Qinggang, et al. Review on underwater docking technology of AUV[J]. Chinese Journal of Ship Research, 2018, 13(6): 43–49,65. doi: 10.19693/j.issn.1673-3185.01182
    [5]
    刘伯胜, 雷家煜. 水声学原理[M]. 2版. 哈尔滨: 哈尔滨工程大学出版社, 2010: 101–115.

    LIU Bosheng and LEI Jiayu. Principle of Underwater Acoustics[M]. 2nd ed. Harbin: Harbin Engineering University Press, 2010: 101–115.
    [6]
    赵红光. 试论我国水声信号处理领域的最新进展[J]. 科技创新与应用, 2015(27): 49.

    ZHAO Hongguang. Research progress of underwater acoustic signal processing in China[J]. Technology Innovation and Application, 2015(27): 49.
    [7]
    SHARIF B S, NEASHAM J, HINTON O R, et al. A computationally efficient Doppler compensation system for underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2000, 25(1): 52–61. doi: 10.1109/48.820736
    [8]
    霍雁明, 殷敬伟, 张晓. 水声通信中多普勒系数估计方法研究[J]. 科技广场, 2012(3): 88–92. doi: 10.3969/j.issn.1671-4792.2012.03.024

    HUO Yanming, YIN Jingwei, and ZHANG Xiao. Study on Doppler Coeffcients estimate in underwater acoustic communication[J]. Science Mosaic, 2012(3): 88–92. doi: 10.3969/j.issn.1671-4792.2012.03.024
    [9]
    MA Lu, JIA Hanbo, LIU Songzuo, et al. Low-complexity Doppler compensation algorithm for underwater acoustic OFDM systems with nonuniform Doppler shifts[J]. IEEE Communications Letters, 2020, 24(9): 2051–2054. doi: 10.1109/LCOMM.2020.2998293
    [10]
    BHUIYAN M Z H, SODERHOLM S, THOMBRE S, et al. Implementation of a software-defined BeiDou receiver[M]. SUN Jiadong, JIAO Wenhai, WU Haitao, et al. China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume I. Berlin: Springer, 2014: 751–762.
    [11]
    徐东明, 崔姝, 罗小宏. GPS基带信号处理方法综述[J]. 电光与控制, 2021, 28(10): 55–60. doi: 10.3969/j.issn.1671-637X.2021.10.012

    XU Dongming, CUI Shu, and LUO Xiaohong. A review on GPS baseband signal processing methods[J]. Electronics Optics &Control, 2021, 28(10): 55–60. doi: 10.3969/j.issn.1671-637X.2021.10.012
    [12]
    陈涛. GPS接收机基带信号处理的研究和设计[D]. [硕士论文], 上海交通大学, 2009: 69.

    CHEN Tao. Research and design of GPS receiver baseband processing[D]. [Master dissertation], Shanghai Jiao Tong University, 2009: 69.
    [13]
    谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2009.

    XIE Gang. Principles of GPS and Receiver Design[M]. Beijing: Publishing House of Electronics Industry, 2009.
    [14]
    JWO D J. Optimisation and sensitivity analysis of GPS receiver tracking loops in dynamic environments[J]. IEE Proceedings-Radar, Sonar and Navigation, 2001, 148(4): 241–250. doi: 10.1049/ip-rsn:20010429
    [15]
    NEZHADSHAHBODAGHI M, MOSAVI M R, and TABATABAEI A. An improved two-step time-parallel semi-bit method for GPS weak signal acquisition[J]. AEU-International Journal of Electronics and Communications, 2020, 121: 153240. doi: 10.1016/j.aeue.2020.153240
    [16]
    KAPLAN E D and HEGARTY C J. Understanding GPS Principles and Applications[M]. 2nd ed. Boston: Artech House, 2006: 224–239.
    [17]
    KANG S and LEE Y H. Rapid acquisition of PN signals for DS/SS systems using a phase estimator[J]. IEEE Journal on Selected Areas in Communications, 2001, 19(6): 1128–1137. doi: 10.1109/49.926368
    [18]
    HUANG Wenzhun, ZHANG Shanwen, and YAN R H. Novel spread spectrum communication theory and the anti-jamming applications[C]. 2021 6th International Conference on Inventive Computation Technologies (ICICT). Coimbatore, India: IEEE, 2021: 56–61.
    [19]
    TANG Nvzhi, ZENG Qiao, LUO Dongyan, et al. Research on development and application of underwater acoustic communication system[J]. Journal of Physics:Conference Series, 2020, 1617: 012036. doi: 10.1088/1742-6596/1617/1/012036
    [20]
    CARTER G. Time delay estimation for passive sonar signal processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(3): 463–470. doi: 10.1109/TASSP.1981.1163560
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)

    Article Metrics

    Article views (559) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return