Advanced Search
Volume 44 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
LUO Xinwei, LI Lei, SHEN Zihan. Line Spectrum Trajectory Extraction Method of Underwater Acoustic Signal Based on Dynamic Parameter HMM[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1956-1965. doi: 10.11999/JEIT211374
Citation: LUO Xinwei, LI Lei, SHEN Zihan. Line Spectrum Trajectory Extraction Method of Underwater Acoustic Signal Based on Dynamic Parameter HMM[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1956-1965. doi: 10.11999/JEIT211374

Line Spectrum Trajectory Extraction Method of Underwater Acoustic Signal Based on Dynamic Parameter HMM

doi: 10.11999/JEIT211374
Funds:  The National Natural Science Foundation of China (12174053, 91938203), The Fundamental Research Funds for the Central Universities (2242021k30019)
  • Received Date: 2021-11-30
  • Accepted Date: 2022-03-22
  • Rev Recd Date: 2022-03-12
  • Available Online: 2022-03-26
  • Publish Date: 2022-06-21
  • In view of the weak ability of traditional Hidden Markov model (HMM) method to extract time-varying line spectrum and multi line spectrum and the large amount of calculation in dynamic programming process, a One- Dimensional Hidden Markov Model (1D-HMM) method based on dynamic parameters is proposed to extract line spectrum trajectory in LOw Frequency Analysis and Recording (LOFAR) diagram of underwater acoustic signal. In this method, the time-varying frequency state is modeled as a first-order Markov process, and the Viterbi algorithm is repeated several times to extract multiple frequency trajectories with the largest a posteriori probability. In the iterative process, the state transition probability matrix in HMM is dynamically adjusted by the first derivative of the sequence calculated in real time, which improves the extraction ability of line spectrum trajectory and the resolution ability of multi line spectrum; A power spectrum accumulation method based on dynamic sliding window is designed to estimate the birth and death of line spectrum and eliminate false line spectrum trajectories. At the same time, the block processing strategy is designed for LOFAR graph data in the implementation process, which reduces greatly the amount of calculation. The simulation and actual data processing results show that the method can effectively detect and track the frequency state of complex time-varying spectrum with good operational efficiency under low signal-to-noise ratio conditions, which provides good technical support for the detection of weak signals in sonar devices.
  • loading
  • [1]
    方世良, 杜栓平, 罗昕炜, 等. 水声目标特征分析与识别技术[J]. 中国科学院院刊, 2019, 34(3): 297–305. doi: 10.16418/j.issn.1000-3045.2019.03.007

    FANG Shiliang, DU Shuanping, LUO Xinwei, et al. Development of underwater acoustic target feature analysis and recognition technology[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(3): 297–305. doi: 10.16418/j.issn.1000-3045.2019.03.007
    [2]
    马凯, 蔡昱明, 王易川, 等. 基于噪声抑制门的两级自适应线谱增强算法[J]. 电子与信息学报, 2021, 43(3): 773–780. doi: 10.11999/JEIT200540

    MA Kai, CAI Yuming, WANG Yichuan, et al. An algorithm of two-level adaptive line-spectrum enhancement based on noise suppression gate[J]. Journal of Electronics &Information Technology, 2021, 43(3): 773–780. doi: 10.11999/JEIT200540
    [3]
    王学成, 王鲁军, 洪常委. 一种基于DOA分布信息熵加权的线谱目标检测方法[J]. 声学技术, 2021, 40(1): 117–122. doi: 10.16300/j.cnki.1000-3630.2021.01.018

    WANG Xuecheng, WANG Lujun, and HONG Changwei. A linear spectrum target detection method based on DOA distribution information entropy weighting[J]. Technical Acoustics, 2021, 40(1): 117–122. doi: 10.16300/j.cnki.1000-3630.2021.01.018
    [4]
    PARIS S and JAUFFRET C. Frequency line tracking using HMM-based schemes [passive sonar][J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2): 439–449. doi: 10.1109/TAES.2003.1207256
    [5]
    SONG T L, KIM H W, and MUSICKI D. Iterative joint integrated probabilistic data association for multitarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 642–653. doi: 10.1109/TAES.2014.130571
    [6]
    PULFORD G W and LA SCALA B F. Multihypothesis viterbi data association: Algorithm development and assessment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 583–609. doi: 10.1109/TAES.2010.5461643
    [7]
    KIM C, LI Fuxin, CIPTADI A, et al. Multiple hypothesis tracking revisited[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 4696–4704.
    [8]
    STREIT R L and BARRETT R F. Frequency line tracking using hidden Markov models[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(4): 586–598. doi: 10.1109/29.52700
    [9]
    BARRETT R F and HOLDSWORTH D A. Frequency tracking using hidden Markov models with amplitude and phase information[J]. IEEE Transactions on Signal Processing, 1993, 41(10): 2965–2976. doi: 10.1109/78.277803
    [10]
    XIE X and EVANS R J. Multiple target tracking and multiple frequency line tracking using hidden Markov models[J]. IEEE Transactions on Signal Processing, 1991, 39(12): 2659–2676. doi: 10.1109/78.107416
    [11]
    XIIE X and EVANS R J. Multiple frequency line tracking with hidden Markov models - further results[J]. IEEE Transactions on Signal Processing, 1993, 41(1): 334. doi: 10.1109/TSP.1993.193150
    [12]
    XIANYA X and EVANS R J. Multiple frequency line tracking using hidden Markov/A models[C]. The 29th IEEE Conference on Decision and Control, Honolulu, USA, 1990: 847–852.
    [13]
    XIE Xianya, ZHU Qiang, and LI Huangrun. Some improvements in the HMM based multiple frequency line tracking algorithms[C]. Proceedings of the Third International Conference on Signal Processing, Beijing, China, 1996: 229–232.
    [14]
    VAN CAPPEL D and ALINAT P. Frequency line extractor using multiple hidden Markov models[C]. IEEE Oceanic Engineering Society. OCEANS'98. Conference Proceedings, Nice, France, 1998: 1481–1485.
    [15]
    PARIS S and JAUFFRET C. A new tracker for multiple frequency line[C]. 2001 IEEE Aerospace Conference Proceedings, Big Sky, USA, 2001: 4/1771–4/1782.
    [16]
    PULFORD G and TYSON K. A high performance 1-D hidden Markov model tracker for passive sonar systems[C]. Undersea Defence Technology, Rotterdam, Netherlands, 2015.
    [17]
    LUO Xinwei and SHEN Zihan. A sensing and tracking algorithm for multiple frequency line components in underwater acoustic signals[J]. Sensors, 2019, 19(22): 4866. doi: 10.3390/s19224866
    [18]
    LUO Xinwei and SHEN Zihan. A space-frequency joint detection and tracking method for line-spectrum components of underwater acoustic signals[J]. Applied Acoustics, 2021, 172: 107609. doi: 10.1016/j.apacoust.2020.107609
    [19]
    吴毅斌, 翟春平, 张宇, 等. 基于隐马尔可夫模型的舰船水下噪声评估方法[J]. 舰船科学技术, 2019, 41(9): 121–124. doi: 10.3404/j.issn.1672-7649.2019.09.023

    WU Yibin, ZHAI Chunping, ZHANG Yu, et al. Evaluation method of ship’s underwater noise based on HMM[J]. Ship Science and Technology, 2019, 41(9): 121–124. doi: 10.3404/j.issn.1672-7649.2019.09.023
    [20]
    ABEL J S, LEE H J, and LOWELL A P. An image processing approach to frequency tracking (application to sonar data)[C]. 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, San Francisco, USA, 1992: 561–564.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (743) PDF downloads(108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return