Advanced Search
Volume 44 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
AN Liang, XU Ruojun, CAO Hongli. Source Depth Discrimination Based on the Interference Striation Slopes Distribution of Radiated Noise[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1906-1918. doi: 10.11999/JEIT211371
Citation: AN Liang, XU Ruojun, CAO Hongli. Source Depth Discrimination Based on the Interference Striation Slopes Distribution of Radiated Noise[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1906-1918. doi: 10.11999/JEIT211371

Source Depth Discrimination Based on the Interference Striation Slopes Distribution of Radiated Noise

doi: 10.11999/JEIT211371
Funds:  The National Natural Science Foundation of China (91938203)
  • Received Date: 2021-11-30
  • Rev Recd Date: 2022-04-03
  • Available Online: 2022-04-21
  • Publish Date: 2022-06-21
  • Focusing on solving the depth discrimination of negative thermocline, an approach based on the slope distribution of interference pattern is present. In this method, a model for the variation of interference pattern distribution of radiated noise with the source depth is established using the difference in the excitation ability of surface and underwater sources of normal mode in shallow water waveguides with negative thermocline, and the physical mechanism of the difference in the slope distribution of interference pattern of radiated noise excited by surface and underwater sources is analyzed. Using the image processing algorithm, the difference is presented as the number of peaks in the column variance vector of the Radon transform matrix of the interference image of radiated noise, and the surface and underwater sources are discriminated accordingly. Simulative and experimental results show that the method can effectively discriminate between surface and underwater sources in shallow water waveguide with negative thermocline, and doesn’t require a priori information about the source distance and ocean acoustic environment parameters compared with the conventional method.
  • loading
  • [1]
    杨坤德, 马远良, 邹士新, 等. 基于环境扰动的线性匹配场处理方法[J]. 声学学报, 2006, 31(6): 496–505. doi: 10.15949/j.cnki.0371-0025.2006.06.004

    YANG Kunde, MA Yuanliang, ZOU Shixin, et al. Linear matched field processing based on environmental perturbation[J]. Acta Acustica, 2006, 31(6): 496–505. doi: 10.15949/j.cnki.0371-0025.2006.06.004
    [2]
    王奇, 陈航, 王英民, 等. 基于最小二乘的短垂线阵匹配场处理[J]. 电子与信息学报, 2017, 39(6): 1355–1362. doi: 10.11999/JEIT160727

    WANG Qi, CHEN Hang, WANG Yingmin, et al. Matched field processing based on the least squares algorithm for short vertical linear array[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1355–1362. doi: 10.11999/JEIT160727
    [3]
    YANG T C. Source localization in range-dependent and time-varying shallow water: The Shallow Water 2006 experimental results[J]. The Journal of the Acoustical Society of America, 2019, 146(6): 4740–4753. doi: 10.1121/1.5138595
    [4]
    LIN Yonggang, ZHU Min, WU Yanqun, et al. Frequency-difference matched field processing for broadband source localization with one hydrophone in shallow ocean environment[C]. 2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP), Shanghai, China, 2020: 84–88.
    [5]
    毕雪洁, 惠娟, 赵安邦, 等. 基于垂直声强流的水中目标深度分类方法[J]. 电子与信息学报, 2021, 43(11): 3237–3246. doi: 10.11999/JEIT201045

    BI Xuejie, HUI Juan, ZHAO Anbang, et al. Underwater target depth classification method based on vertical acoustic intensity flux[J]. Journal of Electronics &Information Technology, 2021, 43(11): 3237–3246. doi: 10.11999/JEIT201045
    [6]
    张朝金, 莫亚枭, 孙炳文, 等. 半经验关系与匹配场联合处理的爆炸声源快速定位[J]. 声学学报, 2021, 46(5): 641–652. doi: 10.15949/j.cnki.0371-0025.2021.05.001

    ZHANG Chaojin, MO Yaxiao, SU Bingwen, et al. Underwater explosive source localization based on semi-empirical relationships and matched field processing[J]. Acta Acustica, 2021, 46(5): 641–652. doi: 10.15949/j.cnki.0371-0025.2021.05.001
    [7]
    PREMUS V E. Modal scintillation index: A physics-based statistic for acoustic source depth discrimination[J]. The Journal of the Acoustical Society of America, 1999, 105(4): 2170–2180. doi: 10.1121/1.426821
    [8]
    PREMUS V E and HELFRICK M N. Use of mode subspace projections for depth discrimination with a horizontal line array: theory and experimental results[J]. The Journal of the Acoustical Society of America, 2013, 133(6): 4019–4031. doi: 10.1121/1.4804317
    [9]
    LI Xiaobin, SUN Chao, and LIU Xionghou. Source depth discrimination in shallow water using modal correlation scintillation index[C]. 2021 OES China Ocean Acoustics (COA), Harbin, China, 2021: 976–981.
    [10]
    刘志韬, 郭良浩, 闫超. 利用自相关函数warping变换的浅海声源深度判别[J]. 声学学报, 2019, 44(1): 28–38. doi: 10.15949/j.cnki.0371-0025.2019.01.004

    LIU Zhitao, GUO Lianghao, and YAN Chao. Source depth discrimination in shallow water based on relation formula warping transform[J]. Acta Acustica, 2019, 44(1): 28–38. doi: 10.15949/j.cnki.0371-0025.2019.01.004
    [11]
    林旺生, 梁国龙, 王燕, 等. 运动目标辐射声场干涉结构映射域特征研究[J]. 物理学报, 2014, 63(3): 034306. doi: 10.7498/aps.63.034306

    LIN Wangsheng, LIANG Guolong, WANG Yan, et al. Characteristics of mapping domain of the acoustic field interference structures radiated by a moving target[J]. Acta Physica Sinica, 2014, 63(3): 034306. doi: 10.7498/aps.63.034306
    [12]
    BYUN G, SONG H C, and CHO C. Adaptive array invariant in range-dependent environments with variable bathymetry[J]. The Journal of the Acoustical Society of America, 2021, 149(2): 1363–1370. doi: 10.1121/10.0003562
    [13]
    安良, 王志强, 陆佶人. 利用LOFAR谱图的二维傅里叶变换脊计算波导不变量[J]. 电子与信息学报, 2008, 30(12): 2930–2933. doi: 10.3724/SP.J.1146.2007.00800

    AN Liang, WANG Zhiqiang, LU Jiren. Calculating the waveguide invariant by the 2-D Fourier transform ridges of lofargram image[J]. Journal of Electronics &Information Technology, 2008, 30(12): 2930–2933. doi: 10.3724/SP.J.1146.2007.00800
    [14]
    于喜凤, 李辉, 徐哲臻, 等. 一种基于阵列不变量的浅海声源深度分类方法[J]. 声学技术, 2021, 40(5): 601–606. doi: 10.16300/j.cnki.1000-3630.2021.05.003

    YU Xifeng, LI Hui, XU Zhezhen, et al. Source depth discrimination based on array invariant in shallow water[J]. Technical Acoustics, 2021, 40(5): 601–606. doi: 10.16300/j.cnki.1000-3630.2021.05.003
    [15]
    刘志韬, 郭良浩, 闫超. 利用波导不变量的浅海负跃层声源深度判别[J]. 声学学报, 2019, 44(5): 925–933. doi: 10.15949/j.cnki.0371-0025.2019.05.013

    LIU Zhitao, GUO Lianghao, and YAN Chao. Source depth discrimination in negative thermocline using waveguide invariant[J]. Acta Acustica, 2019, 44(5): 925–933. doi: 10.15949/j.cnki.0371-0025.2019.05.013
    [16]
    苏冰, 司治涛, 刘家轩, 等. 一种浅海负跃层下的多目标声源距离估计方法[J]. 声学与电子工程, 2021(1): 27–30, 38.

    SU Bing, SI Zhitao, LIU Jiaxuan, et al. A multi-target sound source distance estimation method under shallow sea negative thermocline[J]. Acoustics and Electronics Engineering, 2021(1): 27–30, 38.
    [17]
    田玲爱, 刘福臣, 周士弘. 利用Hough变换提取波导不变量[J]. 声学与电子工程, 2009(4): 22–24.

    TIAN Ling’ai, LIU Fuchen, and ZHOU Shihong. Waveguide invariant extraction based on Hough transform[J]. Acoustics and Electronics Engineering, 2009(4): 22–24.
    [18]
    刘伯胜, 雷家煜. 水声学原理[M]. 2版. 哈尔滨: 哈尔滨工程大学出版社, 2010: 96–97.

    LIU Bosheng and LEI Jiayu. Principles of Under Water Sound[M]. 2nd ed. Harbin: Harbin Engineering University Press, 2010: 96–97.
    [19]
    LE GALL Y, SOCHELEAU F X, and BONNEL J. Matched-field performance prediction with model mismatch[J]. IEEE Signal Processing Letters, 2016, 23(4): 409–413. doi: 10.1109/LSP.2016.2524645
    [20]
    LIM J S. Two-Dimensional Signal and Image Processing[M]. Englewood Cliffs, USA: Prentice-Hall, Inc. , 1990: 42–45.
    [21]
    于晓林, 骆文于, 杨雪峰, 等. 负跃层浅海声传播问题的解析解及其在水下脉冲声传播研究中的应用[J]. 声学学报, 2019, 44(5): 913–924. doi: 10.15949/j.cnki.0371-0025.2019.05.012

    YU Xiaolin, LUO Wenyu, YANG Xuefeng, et al. Exact solution based on wave-number-integration theory for acoustic propagation in a shallow-water environment with a thermocline and its application to underwater pulse propagation[J]. Acta Acustica, 2019, 44(5): 913–924. doi: 10.15949/j.cnki.0371-0025.2019.05.012
    [22]
    EVANS R B and CAREY W M. Ocean Ambient Noise[M]. Springer, Berlin, 2013: 52–54.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(6)

    Article Metrics

    Article views (680) PDF downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return