Advanced Search
Volume 44 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
ZOU Yikun, WANG Gang, WANG Jinlong, LIU Haoyang. Delay Optimization Design for Multi-UAVs Mobile Edge Computing Systems Based on MIMO[J]. Journal of Electronics & Information Technology, 2022, 44(3): 881-889. doi: 10.11999/JEIT211360
Citation: ZOU Yikun, WANG Gang, WANG Jinlong, LIU Haoyang. Delay Optimization Design for Multi-UAVs Mobile Edge Computing Systems Based on MIMO[J]. Journal of Electronics & Information Technology, 2022, 44(3): 881-889. doi: 10.11999/JEIT211360

Delay Optimization Design for Multi-UAVs Mobile Edge Computing Systems Based on MIMO

doi: 10.11999/JEIT211360
Funds:  The National Natural Science Foundation of China (62071146, 62071147)
  • Received Date: 2021-11-30
  • Accepted Date: 2022-02-26
  • Rev Recd Date: 2022-02-25
  • Available Online: 2022-03-01
  • Publish Date: 2022-03-28
  • The rapid growth of data and the computing limitations of devices have spawned Mobile Edge Computing (MEC) solutions in Internet of Things. Among them, the high maneuverability, easy deployment and low cost of the Unmanned Aerial Vehicle (UAV) swarm and Multiple Input Multiple Output (MIMO) technology can enhance the transmission capacity and shorten the transmission delay in the MEC network. In this paper, the maximum total delay of the system are minimized by jointly optimizing the UAV trajectory, ground users’ratio of data offloaded, assisted UAV’s ratio of data offloaded and assisted UAV’sratio of data allocation in the multi-UAVs MIMO-MEC system, in which successive convex optimization technology and block coordinate descent method are used to solve the non-convex problem. The factors affecting the system delay are discussed, and the effectiveness and convergence of the algorithm is verified in the simulation results.
  • loading
  • [1]
    ZHANG Shangwei, LIU Jiajia, and SUN Wen. Stochastic geometric analysis of multiple unmanned aerial vehicle-assisted communications over internet of things[J]. IEEE Internet of Things Journal, 2019, 6(3): 5446–5460. doi: 10.1109/JIOT.2019.2902162
    [2]
    YUAN Zhenhui, JIN Jie, SUN Lingling, et al. Ultra-reliable IoT communications with UAVs: A swarm use case[J]. IEEE Communications Magazine, 2018, 56(12): 90–96. doi: 10.1109/MCOM.2018.1800161
    [3]
    HAYAT S, YANMAZ E, and MUZAFFAR R. Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2624–2661. doi: 10.1109/COMST.2016.2560343
    [4]
    VALCARCE A, RASHEED T, GOMEZ K, et al. Airborne base stations for emergency and temporary events[C]. Proceedings of the 5th International Conference on Personal Satellite Services, Toulouse, Fracne, 2013: 13–25.
    [5]
    ZENG Yong, ZHANG Rui, and TENG J L. Wireless communications with unmanned aerial vehicles: Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36–42. doi: 10.1109/MCOM.2016.7470933
    [6]
    JEONG S, SIMEONE O, and KANG J. Mobile edge computing via a UAV-mounted cloudlet: Optimization of bit allocation and path planning[J]. IEEE Transactions on Vehicular Technology, 2018, 67(3): 2049–2063. doi: 10.1109/TVT.2017.2706308
    [7]
    ZHANG Tiankui, XU Yu, LOO J, et al. Joint computation and communication design for UAV-assisted mobile edge computing in IoT[J]. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5505–5516. doi: 10.1109/TII.2019.2948406
    [8]
    MAO Yuyi, YOU Changsheng, ZHANG JUN, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201
    [9]
    HU Qiyu, CAI Yunlong, YU Guanding, et al. Joint offloading and trajectory design for UAV-enabled mobile edge computing systems[J]. IEEE Internet of Things Journal, 2019, 6(2): 1879–1892. doi: 10.1109/JIOT.2018.2878876
    [10]
    YU Zhe, GONG Yanmin, GONG Shimin, et al. Joint task offloading and resource allocation in UAV-enabled mobile edge computing[J]. IEEE Internet of Things Journal, 2020, 7(4): 3147–3159. doi: 10.1109/JIOT.2020.2965898
    [11]
    MEI Haibo, YANG Kun, LIU Qiang, et al. Joint trajectory-resource optimization in UAV-enabled edge-cloud system with virtualized mobile clone[J]. IEEE Internet of Things Journal, 2020, 7(7): 5906–5921. doi: 10.1109/JIOT.2019.2952677
    [12]
    ZHANG Liang and ANSARI N. Latency-aware IoT service provisioning in UAV-aided mobile-edge computing networks[J]. IEEE Internet of Things Journal, 2020, 7(10): 10573–10580. doi: 10.1109/JIOT.2020.3005117
    [13]
    SHI Qingjiang, PENG Cheng, XU Weiqiang, et al. Energy efficiency optimization for MISO SWIPT systems with zero-forcing beamforming[J]. IEEE Transactions on Signal Processing, 2016, 64(4): 842–854. doi: 10.1109/TSP.2015.2489603
    [14]
    CHO Y S, KIM J, YANG W Y, 等, 孙锴, 黄威, 译. MIMO-OFDM无线通信技术及MATLAB实现[M]. 北京: 电子工业出版社, 2013.

    CHO Y S, KIM J, YANG W Y, et al. , SUN Kai, HUANG Wei, trans. MIMO-OFDM Wireless Communications with MATLAB[M]. Beijing: Publishing House of Electronics Industry, 2013.
    [15]
    WU Qingqing, ZENG Yong, and ZHANG Rui. Joint trajectory and communication design for multi-UAV enabled wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 2109–2121. doi: 10.1109/TWC.2017.2789293
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (823) PDF downloads(179) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return