Citation: | XIAO Pan, YAN Shule, LONG Jinliang, XIAO Meng, CAI Nian, CHEN Xindu. Coarse-to-fine Inspection for Flexo First Item Based on the Electronic Sample[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1563-1571. doi: 10.11999/JEIT211358 |
[1] |
李少波, 杨静, 王铮, 等. 缺陷检测技术的发展与应用研究综述[J]. 自动化学报, 2020, 46(11): 2319–2336. doi: 10.16383/j.aas.c180538
LI Shaobo, YANG Jing, WANG Zheng, et al. Review of development and application of defect detection technology[J]. Acta Automatica Sinica, 2020, 46(11): 2319–2336. doi: 10.16383/j.aas.c180538
|
[2] |
RASHEED A, ZAFAR B, RASHEED A, et al. Fabric defect detection using computer vision techniques: A comprehensive review[J]. Mathematical Problems in Engineering, 2020, 2020: 8189403. doi: 10.1155/2020/8189403
|
[3] |
QAYUM M A and NASEER M. A fast approach for finding design repeat in textile rotary printing for fault detection[J]. The Journal of the Textile Institute, 2017, 108(1): 62–65. doi: 10.1080/00405000.2015.1135579
|
[4] |
ALAM S M J, HU Guoqing, and ROY S. Analysis of a printed complex image quality checking method of fabric cloth for development of an automated quality checking system[J]. Signal, Image and Video Processing, 2021, 15(1): 195–203. doi: 10.1007/s11760-020-01737-w
|
[5] |
JING Junfeng and REN Huanhuan. Defect detection of printed fabric based on RGBAAM and image pyramid[J]. Autex Research Journal, 2021, 21(2): 135–141. doi: 10.2478/aut-2020-0007
|
[6] |
NG M K, NGAN H Y T, YUAN Xiaoming, et al. Patterned fabric inspection and visualization by the method of image decomposition[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(3): 943–947. doi: 10.1109/TASE.2014.2314240
|
[7] |
KANG Xuejuan, YANG Panpan, and JING Junfeng. Defect detection on printed fabrics via Gabor filter and regular band[J]. Journal of Fiber Bioengineering & Informatics, 2015, 8(1): 195–206. doi: 10.3993/jfbi03201519
|
[8] |
李敏, 崔树芹, 谢治平. 高斯混合模型在印花织物疵点检测中的应用[J]. 纺织学报, 2015, 36(8): 94–98. doi: 10.13475/j.fzxb.20140504105
LI Min, CUI Shuqin, and XIE Zhiping. Application of Gaussian mixture model on defect detection of print fabric[J]. Journal of Textile Research, 2015, 36(8): 94–98. doi: 10.13475/j.fzxb.20140504105
|
[9] |
HU Xudong, FU Mingyue, ZHU Zhijuan, et al. Unsupervised defect detection algorithm for printed fabrics using content-based image retrieval techniques[J]. Textile Research Journal, 2021, 91(21/22): 2551–2566. doi: 10.1177/00405175211008614
|
[10] |
CHAKRABORTY S, MOORE M, and PARRILLO-CHAPMAN L. Automatic defect detection of print fabric using convolutional neural network[J]. arXiv preprint arXiv: 2101.00703, 2021.
|
[11] |
ZHAO Zhiyong, GUI Kang, and WANG Peimao. Fabric defect detection based on cascade faster R-CNN[C]. The 4th International Conference on Computer Science and Application Engineering, Sanya, China, 2020: 98.
|
[12] |
HUANG Yanqing, JING Junfeng, and WANG Zhen. Fabric defect segmentation method based on deep learning[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5005715. doi: 10.1109/TIM.2020.3047190
|
[13] |
DETONE D, MALISIEWICZ T, and RABINOVICH A. SuperPoint: Self-supervised interest point detection and description[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA, 2018: 224–236.
|
[14] |
SARLIN P E, DETONE D, MALISIEWICZ T, et al. SuperGlue: Learning feature matching with graph neural networks[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 4937–4946.
|
[15] |
SATOH S. Simple low-dimensional features approximating NCC-based image matching[J]. Pattern Recognition Letters, 2011, 32(14): 1902–1911. doi: 10.1016/j.patrec.2011.07.027
|
[16] |
BALNTAS V, LENC K, VEDALDI A, et al. HPatches: A benchmark and evaluation of handcrafted and learned local descriptors[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3852–3861.
|
[17] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[18] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]. 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 740–755.
|
[19] |
CUTURI M. Sinkhorn distances: Lightspeed computation of optimal transport[C]. The 26th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2013: 2292–2300.
|
[20] |
王勇臻, 陈燕, 于莹莹. 求解多旅行商问题的改进分组遗传算法[J]. 电子与信息学报, 2017, 39(1): 198–205. doi: 10.11999/JEIT160211
WANG Yongzhen, CHEN Yan, and YU Yingying. Improved grouping genetic algorithm for solving multiple traveling salesman problem[J]. Journal of Electronics &Information Technology, 2017, 39(1): 198–205. doi: 10.11999/JEIT160211
|
[21] |
WANG Yangping, XU Shaowei, ZHU Zhengping, et al. Real-time defect detection method for printed images based on grayscale and gradient differences[J]. Journal of Engineering Science and Technology Review, 2018, 11(1): 180–188. doi: 10.25103/jestr.111.22
|
[22] |
TOLBA A S and RAAFAT H M. Multiscale image quality measures for defect detection in thin films[J]. The International Journal of Advanced Manufacturing Technology, 2015,, 79(1/4): 113–122. doi: 10.1007/s00170-014-6758-7
|