Citation: | LI Yuan, LI Yanjun, LIU Jinchao, FAN Zhun, WANG Qinglin. Research on Segmentation of Steel Surface Defect Images Based on Improved Res-UNet Network[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1513-1520. doi: 10.11999/JEIT211350 |
[1] |
徐镪, 朱洪锦, 范洪辉, 等. 改进的YOLOv3网络在钢板表面缺陷检测研究[J]. 计算机工程与应用, 2020, 56(16): 265–272. doi: 10.3778/j.issn.1002-8331.2003-0232
XU Qiang, ZHU Hongjin, FAN Honghui, et al. Study on detection of steel plate surface defects by improved YOLOv3 network[J]. Computer Engineering and Applications, 2020, 56(16): 265–272. doi: 10.3778/j.issn.1002-8331.2003-0232
|
[2] |
BORSELLI A, COLLA V, VANNUCCI M, et al. A fuzzy inference system applied to defect detection in flat steel production[C]. The International Conference on Fuzzy Systems, Barcelona, Spain, 2010: 1–6.
|
[3] |
XU Ke, XU Yang, ZHOU Peng, et al. Application of RNAMlet to surface defect identification of steels[J]. Optics and Lasers in Engineering, 2018, 105: 110–117. doi: 10.1016/j.optlaseng.2018.01.010
|
[4] |
汤勃, 孔建益, 王兴东, 等. 粗糙集理论的带钢表面缺陷图像的识别与分类[J]. 中国图象图形学报, 2011, 16(7): 1213–1218. doi: 10.11834/jig.20110718
TANG Bo, KONG Jianyi, WANG Xingdong, et al. Recognition and classification for steel strip surface defect images based on rough set theory[J]. Journal of Image and Graphics, 2011, 16(7): 1213–1218. doi: 10.11834/jig.20110718
|
[5] |
LIU Kun, WANG Heying, CHEN Haiyong, et al. Steel surface defect detection using a new haar–weibull-variance model in unsupervised manner[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(10): 2585–2596. doi: 10.1109/TIM.2017.2712838
|
[6] |
WANG Heying, ZHANG Jiawei, TIAN Ying, et al. A simple guidance template-based defect detection method for strip steel surfaces[J]. IEEE Transactions on Industrial Informatics, 2019, 15(5): 2798–2809. doi: 10.1109/TII.2018.2887145
|
[7] |
KWON B K, WON J S, and KANG D J. Fast defect detection for various types of surfaces using random forest with VOV features[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(5): 965–970. doi: 10.1007/s12541-015-0125-y
|
[8] |
CHU Maoxiang, LIU Xiaoping, GONG Rongfen, et al. Multi-class classification method using twin support vector machines with multi-information for steel surface defects[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 176: 108–118. doi: 10.1016/j.chemolab.2018.03.014
|
[9] |
YANG Changhui, ZHANG Jinxun, JI Gang, et al. Recognition of defects in steel surface image based on neural networks and morphology[C]. The Second Workshop on Digital Media and its Application in Museum & Heritages (DMAMH 2007), Chongqing, China, 2007: 72–77.
|
[10] |
REN Ruoxu, HUNG T, and TAN K C. A generic deep-learning-based approach for automated surface inspection[J]. IEEE Transactions on Cybernetics, 2018, 48(3): 929–940. doi: 10.1109/TCYB.2017.2668395
|
[11] |
王宪保, 李洁, 姚明海, 等. 基于深度学习的太阳能电池片表面缺陷检测方法[J]. 模式识别与人工智能, 2014, 27(6): 517–523. doi: 10.3969/j.issn.1003-6059.2014.06.006
WANG Xianbao, LI Jie, YAO Minghai, et al. Solar cells surface defects detection based on deep learning[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(6): 517–523. doi: 10.3969/j.issn.1003-6059.2014.06.006
|
[12] |
JIA Hongbin, MURPHEY Y L, SHI Jianjun, et al. An intelligent real-time vision system for surface defect detection[C]. The 17th International Conference on Pattern Recognition, Cambridge, UK, 2004: 239–242.
|
[13] |
KIM M S, PARK T, and PARK P. Classification of steel surface defect using convolutional neural network with few images[C]. The 12th Asian Control Conference, Kitakyushu, Japan, 2019: 1398–1401.
|
[14] |
MASCI J, GIUSTI A, CIRESAN D, et al. A fast learning algorithm for image segmentation with max-pooling convolutional networks[C]. 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 2013: 2713–2717.
|
[15] |
郭兴宝. 基于机器学习的无缝钢管表面缺陷检测技术研究[D]. [硕士论文], 大连交通大学, 2019.
GUO Baoxing. Research on surface defect detection technology of seamless steel tube based on machine learning[D]. [Master dissertation], Dalian Jiaotong University, 2019.
|
[16] |
甘胜丰. 带钢表面缺陷图像检测与分类方法研究[D]. [博士论文], 中国地质大学, 2013.
GAN Shengfeng. Method of strip surface defect image detection and classification[D]. [Ph. D. dissertation], China University of Geosciences, 2013.
|
[17] |
STEPHAN M and SANTRA A. Radar-based human target detection using deep residual U-net for smart home applications[C]. The 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, USA, 2019: 175–182.
|
[18] |
储珺, 朱晓阳, 冷璐, 等. 引入通道注意力和残差学习的目标检测器[J]. 模式识别与人工智能, 2020, 33(10): 889–897. doi: 10.16451/j.cnki.issn1003-6059.202010003
CHU Jun, ZHU Xiaoyang, LENG Lu, et al. Target detector with channel attention and residual learning[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(10): 889–897. doi: 10.16451/j.cnki.issn1003-6059.202010003
|
[19] |
ZENG Zitao, XIE Weihao, ZHANG Yunzhe, et al. RIC-Unet: An improved neural network based on unet for nuclei segmentation in histology images[J]. IEEE Access, 2019, 7: 21420–21428. doi: 10.1109/ACCESS.2019.2896920
|
[20] |
刘市祺, 孙晓波, 谢晓亮, 等. 基于区域建议网络和残差结构的导丝跟踪[J]. 模式识别与人工智能, 2019, 32(1): 36–42. doi: 10.16451/j.cnki.issn1003-6059.201901005
LIU Shiqi, SUN Xiaobo, XIE Xiaoliang, et al. Guidewire tracking based on regional proposal network and residual structure[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(1): 36–42. doi: 10.16451/j.cnki.issn1003-6059.201901005
|
[21] |
SUDRE C H, LI Wenqi, VERCAUTEREN T, et al. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations[C]. The 3rd International Workshop on Deep Learning in Medical Image Analysis, Québec City, Canada, 2017: 240–248.
|
[22] |
张立恒, 王浩, 薛博维, 等. 基于改进D-LinkNet模型的高分遥感影像道路提取研究[J]. 计算机工程, 2021, 47(9): 288–296. doi: 10.19678/j.issn.1000-3428.0058977
ZHANG Liheng, WANG Hao, XUE Bowei, et al. Research of road extraction from high-resolution remote sensing images based on improved D-LinkNet model[J]. Computer Engineering, 2021, 47(9): 288–296. doi: 10.19678/j.issn.1000-3428.0058977
|