Citation: | YANG Binbin, YAN Shefeng, ZHANG Shaochen, YE Zihao. Hybrid Bi-directional Turbo Equalization for Underwater Acoustic Communications Based on Kalman Filter[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1879-1886. doi: 10.11999/JEIT211343 |
[1] |
HUANG Jianguo, WANG Han, HE Chengbing, et al. Underwater acoustic communication and the general performance evaluation criteria[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(8): 951–971. doi: 10.1631/FITEE.1700775
|
[2] |
STOJANOVIC M, CATIPOVIC J A, and PROAKIS J G. Phase-coherent digital communications for underwater acoustic channels[J]. IEEE Journal of Oceanic Engineering, 1994, 19(1): 100–111. doi: 10.1109/48.289455
|
[3] |
ZHANG Yi, VENKATESAN R, DOBRE O A, et al. Efficient estimation and prediction for sparse time-varying underwater acoustic channels[J]. IEEE Journal of Oceanic Engineering, 2020, 45(3): 1112–1125. doi: 10.1109/JOE.2019.2911446
|
[4] |
SONG Aijun, BADIEY M, MCDONALD V K, et al. Time reversal receivers for high data rate acoustic multiple-input–multiple-output communication[J]. IEEE Journal of Oceanic Engineering, 2011, 36(4): 525–538. doi: 10.1109/JOE.2011.2166660
|
[5] |
PELEKANAKIS K and CHITRE M. New sparse adaptive algorithms based on the natural gradient and the L0-norm[J]. IEEE Journal of Oceanic Engineering, 2013, 38(2): 323–332. doi: 10.1109/JOE.2012.2221811
|
[6] |
CHEN Zhenrui, WANG Jintao, and ZHENG Y R. Frequency-domain Turbo equalization with iterative channel estimation for MIMO underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2017, 42(3): 711–721. doi: 10.1109/JOE.2016.2600106
|
[7] |
WANG Longbao, TAO Jun, and ZHENG Y R. Single-carrier frequency-domain Turbo equalization without cyclic prefix or zero padding for underwater acoustic communications[J]. The Journal of the Acoustical Society of America, 2012, 132(6): 3809–3817. doi: 10.1121/1.4763987
|
[8] |
YANG Zengli and ZHENG Y R. Iterative channel estimation and Turbo equalization for multiple-input multiple-output underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2016, 41(1): 232–242. doi: 10.1109/JOE.2015.2398731
|
[9] |
LAWRENCE R and KAUFMAN H. The Kalman filter for the equalization of a digital communications channel[J]. IEEE Transactions on Communication Technology, 1971, 19(6): 1137–1141. doi: 10.1109/TCOM.1971.1090786
|
[10] |
ROY S and DUMAN T M. Soft input soft output Kalman equalizer for MIMO frequency selective fading channels[J]. IEEE Transactions on Wireless Communications, 2007, 6(2): 506–514. doi: 10.1109/TWC.2007.05175
|
[11] |
PARK S and CHOI S. Iterative equalizer based on Kalman filtering and smoothing for MIMO-ISI channels[J]. IEEE Transactions on Signal Processing, 2015, 63(19): 5111–5120. doi: 10.1109/TSP.2015.2457399
|
[12] |
TAO Jun, WU Yanbo, WU Qisong, et al. Kalman filter based equalization for underwater acoustic communications[C]. OCEANS 2019, Marseille, France, 2019: 1–5.
|
[13] |
DOUILLARD C, JÉZÉQUEL M, BERROU C, et al. Iterative correction of intersymbol interference: Turbo-equalization[J]. European Transactions on Telecommunications, 1995, 6(5): 507–511. doi: 10.1002/ett.4460060506
|
[14] |
LI Xin and WONG T F. Turbo equalization with nonlinear Kalman filtering for time-varying frequency-selective fading channels[J]. IEEE Transactions on Wireless Communications, 2007, 6(2): 691–700. doi: 10.1109/TWC.2007.05352
|
[15] |
YANG Binbin, YAN Shefeng, XU Lijun, et al. Hybrid Turbo equalization based on Kalman filter for underwater acoustic communications[C]. 2021 IEEE International Conference on Signal Processing, Communications and Computing, Xi’an, China, 2021: 1–6.
|
[16] |
杨光, 丁寒雪, 郭庆华, 等. 基于叠加训练序列和低复杂度频域Turbo均衡的时变水声信道估计和均衡[J]. 电子与信息学报, 2021, 43(3): 850–856. doi: 10.11999/JEIT200315
YANG Guang, DING Hanxue, GUO Qinghua, et al. Estimation and equalization of time-varying underwater acoustic channel based on superimposed training and low-complexity Turbo equalization in frequency domain[J]. Journal of Electronics &Information Technology, 2021, 43(3): 850–856. doi: 10.11999/JEIT200315
|
[17] |
奚钧壹, 鄢社锋, 徐立军, 等. 水声通信系统中双向turbo均衡算法[J]. 声学学报, 2018, 43(5): 771–778. doi: 10.15949/j.cnki.0371-0025.2018.05.006
XI Junyi, YAN Shefeng, XU Lijun, et al. Bidirectional turbo equalization for underwater acoustic communications[J]. Acta Acustica, 2018, 43(5): 771–778. doi: 10.15949/j.cnki.0371-0025.2018.05.006
|
[18] |
WANG Zhizhan, LI Yuzhou, WANG Chengcai, et al. A-OMP: An adaptive OMP algorithm for underwater acoustic OFDM channel estimation[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1761–1765. doi: 10.1109/LWC.2021.3079225
|
[19] |
MARQUES E C, MACIEL N, NAVINER L, et al. A review of sparse recovery algorithms[J]. IEEE Access, 2019, 7: 1300–1322. doi: 10.1109/ACCESS.2018.2886471
|
[20] |
NEEDELL D and VERSHYNIN R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J]. Foundations of Computational Mathematics, 2009, 9(3): 317–334. doi: 10.1007/s10208-008-9031-3
|
[21] |
XI Junyi, YAN Shefeng, and XU Lijun. Direct-adaptation based bidirectional Turbo equalization for underwater acoustic communications: Algorithm and undersea experimental results[J]. The Journal of the Acoustical Society of America, 2018, 143(5): 2715–2728. doi: 10.1121/1.5036730
|
[22] |
TAO Jun, WU Jingxian, ZHENG Y R, et al. Enhanced MIMO LMMSE Turbo equalization: Algorithm, simulations, and undersea experimental results[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3813–3823. doi: 10.1109/TSP.2011.2147782
|