Advanced Search
Volume 44 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
LI Jiemeihui, SHI Yang, YANG Yixin, HUANG Xiaodong. Robust Adaptive Matched Field Processing of Rank Reduction for Source Localization under Internal Solitary Waves[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1897-1905. doi: 10.11999/JEIT211333
Citation: LI Jiemeihui, SHI Yang, YANG Yixin, HUANG Xiaodong. Robust Adaptive Matched Field Processing of Rank Reduction for Source Localization under Internal Solitary Waves[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1897-1905. doi: 10.11999/JEIT211333

Robust Adaptive Matched Field Processing of Rank Reduction for Source Localization under Internal Solitary Waves

doi: 10.11999/JEIT211333
Funds:  The National Natural Science Foundation of China (41906160, 11974286, 12174312)
  • Received Date: 2021-11-25
  • Rev Recd Date: 2022-05-19
  • Available Online: 2022-05-24
  • Publish Date: 2022-06-21
  • The mismatch of sound speed induced by internal solitary waves will cause the inaccurate estimation in the matched field processing for source localization. In this paper, a robust Adaptive Matched Field Processing method of Rank Reduction (RR-AMFP) for internal solitary waves is proposed. Based on the traditional adaptive matched field processing algorithm, this method integrates dominant mode rejection beamforming, and reduces the rank of sampling covariance matrix by eigen-decomposition, and suppresses the noise space. Meanwhile, a suppressing coefficient and a weighting factor are used to calculate the weight vector in the matching process, and the mismatched coping vectors are detected. Therefore, this method can maintain better robustness in the internal solitary wave environment, and the reduction of rank also shortens the calculation time. The simulation results show that this method can accurately estimate the source location under a single internal solitary wave, but the internal solitary wave train with large amplitude will still lead to more errors of estimation. The estimated distance error is 3.3% and depth error is 1.5% in the localization experiment of internal solitary waves in the South China Sea, which belongs to reliable localization. The experiment results demonstrate the effectiveness of the method in the actual environment with internal solitary waves.
  • loading
  • [1]
    BAGGEROER A B, KUPERMAN W A, and MIKHALEVSKY P N. An overview of matched field methods in ocean acoustics[J]. IEEE Journal of Oceanic Engineering, 1993, 18(4): 401–424. doi: 10.1109/48.262292
    [2]
    BUCKER H P. Use of calculated sound fields and matched-field detection to locate sound sources in shallow water[J]. The Journal of the Acoustical Society of America, 1976, 59(2): 368–373. doi: 10.1121/1.380872
    [3]
    BAGGEROER A B, KUPERMAN W A, and SCHMIDT H. Matched field processing: Source localization in correlated noise as an optimum parameter estimation problem[J]. The Journal of the Acoustical Society of America, 1988, 83(2): 571–587. doi: 10.1121/1.396151
    [4]
    李焜, 方世良, 安良. 非合作水声脉冲信号的单水听器匹配场定位研究[J]. 电子与信息学报, 2012, 34(11): 2541–2547. doi: 10.3724/SP.J.1146.2012.00547

    LI Kun, FANG Shiliang, and AN Liang. Matched field localization for non-cooperative underwater acoustic pulse signals using a single hydrophone[J]. Journal of Electronics &Information Technology, 2012, 34(11): 2541–2547. doi: 10.3724/SP.J.1146.2012.00547
    [5]
    ZHU Guolei, WANG Yingmin, and WANG Qi. Matched field processing based on Bayesian estimation[J]. Sensors, 2020, 20(5): 1374. doi: 10.3390/s20051374
    [6]
    魏尚飞, 韩东, 张海勇, 等. 基于矩阵特征分解的水下声源匹配场定位[J]. 舰船科学技术, 2021, 43(19): 141–148. doi: 10.3404/j.issn.1672-7649.2021.10.029

    WEI Shangfei, HAN Dong, ZHANG Haiyong, et al. Underwater sound source location with matched field processing based on matrix Eigen decomposition[J]. Ship Science and Technology, 2021, 43(19): 141–148. doi: 10.3404/j.issn.1672-7649.2021.10.029
    [7]
    杨坤德, 段睿, 李辉, 等. 水下声源定位理论与技术[M]. 北京: 电子工业出版社, 2019: 65–144.

    YANG Kunde, DUAN Rui, LI Hui, et al. Theory and Technology of Underwater Source Localization[M]. Beijing: Electronics Industry Press, 2019: 65–144.
    [8]
    SHMELEV A, LIN Y T, and LYNCH J. Low-frequency acoustic propagation through crossing internal waves in shallow water[J]. Journal of Theoretical and Computational Acoustics, 2020, 28(3): 1950013. doi: 10.1142/S2591728519500130
    [9]
    杨坤德. 水声信号的匹配场处理技术研究[D]. [博士论文], 西北工业大学, 2003.

    YANG Kunde. A study on matched field processing of underwater acoustic signals[D]. [Ph. D. dissertation], Northwestern Polytechnical University, 2003.
    [10]
    APEL J R, OSTROVSKY L A, STEPANYANTS Y A, et al. Internal solitons in the ocean and their effect on underwater sound[J]. The Journal of the Acoustical Society of America, 2007, 121(2): 695–722. doi: 10.1121/1.2395914
    [11]
    李整林, 杨益新, 秦继兴, 等. 深海声学与探测技术[M]. 上海: 上海科学技术出版社, 2020: 15–37.

    LI Zhenglin, YANG Yixin, QIN Jixing, et al. Acoustics and Detection Technology in the Deep Sea[M]. Shanghai: Shanghai Science and Technology Press, 2020: 15–37.
    [12]
    马树青. 浅海孤立子内波对声传播的影响[D]. [博士论文], 哈尔滨工程大学, 2011.

    MA Shuqing. Influence of shallow water internal solitary waves on sound propagation[D]. [Ph. D. dissertation], Harbin Engineering University, 2011.
    [13]
    祝捍皓, 肖瑞, 朱军, 等. 三维浅海环境下孤立子内波对低频声能流的传播影响[J]. 声学学报, 2021, 46(3): 365–374. doi: 10.15949/j.cnki.0371-0025.2021.03.005

    ZHU Hanhao, XIAO Rui, ZHU Jun, et al. Influence of internal solitary waves on sound propagation in three-dimensional shallow sea[J]. Acta Acustica, 2021, 46(3): 365–374. doi: 10.15949/j.cnki.0371-0025.2021.03.005
    [14]
    DAUGHERTY J R and LYNCH J F. Surface wave, internal wave, and source motion effects on matched field processing in a shallow water waveguide[J]. The Journal of the Acoustical Society of America, 1990, 87(6): 2503–2526. doi: 10.1121/1.399098
    [15]
    李整林. 浅海中内波、波浪起伏和海底粗糙对匹配场定位的影响[D]. [博士论文], 中国科学院声学研究所, 2002.

    LI Zhenglin. The effects of internal waves, surface fluctuation and bottom roughness on matched field source localization in shallow water[D]. [Ph. D. dissertation], The Institute of Acoustics of the Chinese Academy of Sciences, 2002.
    [16]
    吴开明. 南中国海北部内波环境下匹配场定位研究[D]. [博士论文], 中国科学院研究生院, 2009.

    WU Kaiming. Matched field position study in the internal wave environment in the north of South China Sea[D]. [Ph. D. dissertation], The Institute of Acoustics of the Chinese Academy of Sciences, 2009.
    [17]
    李永飞, 赵航芳. 内波环境下的时频匹配场定位方法[J]. 哈尔滨工程大学学报, 2020, 41(10): 1605–1610. doi: 10.11990/jheu.202007081

    LI Yongfei and ZHAO Hangfang. A time-frequency matched field location method in the presence of internal waves[J]. Journal of Harbin Engineering University, 2020, 41(10): 1605–1610. doi: 10.11990/jheu.202007081
    [18]
    ABRAHAM D A and OWSLEY N L. Beamforming with dominant mode rejection[C]. Conference Proceedings on Engineering in the Ocean Environment, Washington, USA, 1990: 470–475.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (658) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return