Citation: | MA Tianlong, LIU Songzuo, QIAO Gang, PU Wangyi. Bionic Underwater Acoustic Communication by Mimicking Dolphin Whistle Based on Frequency Shift Keying[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2045-2053. doi: 10.11999/JEIT211322 |
[1] |
QARABAQI P and STOJANOVIC M. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels[J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 701–717. doi: 10.1109/JOE.2013.2278787
|
[2] |
HEIDEMANN J, STOJANOVIC M, and ZORZI M. Underwater sensor networks: Applications, advances and challenges[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2012, 370(1958): 158–175. doi: 10.1098/rsta.2011.0214
|
[3] |
JIANG Shengming. On securing underwater acoustic networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 729–752. doi: 10.1109/COMST.2018.2864127
|
[4] |
YANG T C and YANG Wenbin. Low probability of detection underwater acoustic communications using direct-sequence spread spectrum[J]. The Journal of the Acoustical Society of America, 2008, 124(6): 3632–3647. doi: 10.1121/1.2996329
|
[5] |
QU Fengzhong, YANG Liuqing, and YANG T C. High reliability direct-sequence spread spectrum for underwater acoustic communications[C]. Proceedings of the OCEANS 2009, Biloxi, USA, 2009: 1–6.
|
[6] |
DIAMANT R and LAMPE L. Low probability of detection for underwater acoustic communication: A review[J]. IEEE Access, 2018, 6: 19099–19112. doi: 10.1109/ACCESS.2018.2818110
|
[7] |
LIU Songzuo, QIAO Gang, and ISMAIL A. Covert underwater acoustic communication using dolphin sounds[J]. The Journal of the Acoustical Society of America, 2013, 133(4): EL300–EL306. doi: 10.1121/1.4795219
|
[8] |
QIAO Gang, BILAL M, LIU Songzuo, et al. Biologically Inspired covert underwater acoustic communication—A review[J]. Physical Communication, 2018, 30: 107–114. doi: 10.1016/j.phycom.2018.07.007
|
[9] |
马天龙. 仿鲸目动物哨声水声通信技术研究[D]. [硕士论文], 哈尔滨工程大学, 2017.
MA Tianlong. Bionic underwater acoustic communication by mimicking cetaceans whistles[D]. [Master dissertation], Harbin Engineering University, 2017.
|
[10] |
HAN Xiao, YIN Jingwei, DU Pengyu, et al. Experimental demonstration of underwater acoustic communication using bionic signals[J]. Applied Acoustics, 2014, 78: 7–10. doi: 10.1016/j.apacoust.2013.10.009
|
[11] |
韩笑, 殷敬伟, 郭龙祥, 等. 基于差分Pattern时延差编码和海豚whistles信号的仿生水声通信技术研究[J]. 物理学报, 2013, 62(22): 224301. doi: 10.7498/aps.62.224301
HAN Xiao, YIN Jingwei, GUO Longxiang, et al. Research on bionic underwater acoustic communication technology based on differential Pattern time delay shift coding and dolphin whistles[J]. Acta Physica Sinica, 2013, 62(22): 224301. doi: 10.7498/aps.62.224301
|
[12] |
刘凇佐, 刘冰洁, 尹艳玲, 等. M元仿海豚叫声隐蔽水声通信[J]. 哈尔滨工程大学学报, 2014, 35(1): 119–125.
LIU Songzuo, LIU Bingjie, YIN Yanling, et al. M-ray covert underwater acoustic communication by mimicking dolphin sounds[J]. Journal of Harbin Engineering University, 2014, 35(1): 119–125.
|
[13] |
JIANG Jiajia, WANG Xianquan, DUAN Fajie, et al. Bio-inspired steganography for secure underwater acoustic communications[J]. IEEE Communications Magazine, 2018, 56(10): 156–162. doi: 10.1109/MCOM.2018.1601228
|
[14] |
ELMOSLIMANY A, ZHOU Meng, DUMAN T M, et al. An underwater acoustic communication scheme exploiting biological sounds[J]. Wireless Communications and Mobile Computing, 2016, 16(15): 2194–2211. doi: 10.1002/wcm.2676
|
[15] |
LIU Songzuo, MA Tianlong, QIAO Gang, et al. Biologically inspired covert underwater acoustic communication by mimicking dolphin whistles[J]. Applied Acoustics, 2017, 120: 120–128. doi: 10.1016/j.apacoust.2017.01.018
|
[16] |
JIANG Jiajia, LI Chunyue, WANG Xianquan, et al. Covert underwater communication based on combined encoding of diverse time-frequency characteristics of sperm whale clicks[J]. Applied Acoustics, 2021, 171: 107660. doi: 10.1016/j.apacoust.2020.107660
|
[17] |
QIAO Gang, MA Tianlong, LIU Songzuo, et al. A frequency hopping pattern inspired bionic underwater acoustic communication[J]. Physical Communication, 2021, 46: 101288. doi: 10.1016/j.phycom.2021.101288
|
[18] |
杨少凡, 郭中源, 贾宁, 等. 海豚Whistles为信息载体的正交频分复用循环移位键控扩频伪装水声通信[J]. 声学学报, 2018, 43(5): 753–761. doi: 10.15949/j.cnki.0371-0025.2018.05.004
YANG Shaofan, GUO Zhongyuan, JIA Ning, et al. Orthogonal frequency division multiplexing cyclic shift keying spread spectrum camouflaging underwater acoustic communication with dolphin whistles as information carrier[J]. Acta Acustica, 2018, 43(5): 753–761. doi: 10.15949/j.cnki.0371-0025.2018.05.004
|
[19] |
杨少凡, 郭中源, 肖东, 等. 伪装水声通信信号波形设计及其应用[J]. 声学学报, 2019, 44(1): 86–95. doi: 10.15949/j.cnki.0371-0025.2019.01.010
YANG Shaofan, GUO Zhongyuan, XIAO Dong, et al. Waveform design of camouflage underwater acoustic communication and its application[J]. Acta Acustica, 2019, 44(1): 86–95. doi: 10.15949/j.cnki.0371-0025.2019.01.010
|
[20] |
BUCK J R and MORGENBESSER H B. Synthesis and modification of the whistles of the bottlenose dolphin, Tursiops truncatus[J]. The Journal of the Acoustical Society of America, 2000, 108(1): 407–416. doi: 10.1121/1.429474
|
[21] |
WATKINS W. Watkins marine mammal sound database[EB/OL].https://cis.whoi.edu/science/B/whalesounds/about.cfm, 2021.
|
[22] |
BERGER C R, ZHOU Shengli, PREISIG J C, et al. Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1708–1721. doi: 10.1109/TSP.2009.2038424
|