Advanced Search
Volume 44 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
MA Tianlong, LIU Songzuo, QIAO Gang, PU Wangyi. Bionic Underwater Acoustic Communication by Mimicking Dolphin Whistle Based on Frequency Shift Keying[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2045-2053. doi: 10.11999/JEIT211322
Citation: MA Tianlong, LIU Songzuo, QIAO Gang, PU Wangyi. Bionic Underwater Acoustic Communication by Mimicking Dolphin Whistle Based on Frequency Shift Keying[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2045-2053. doi: 10.11999/JEIT211322

Bionic Underwater Acoustic Communication by Mimicking Dolphin Whistle Based on Frequency Shift Keying

doi: 10.11999/JEIT211322
Funds:  The National Natural Science Foundation of China (61771152), The Natural Science Foundation of Heilongjiang Province (YQ2019F002), China Scholarship Council
  • Received Date: 2021-11-24
  • Rev Recd Date: 2022-03-21
  • Available Online: 2022-04-17
  • Publish Date: 2022-06-21
  • To meet the demand of covert Underwater Acoustic Communication (UAC), a bionic UAC method by mimicking dolphin whistle based on Frequency Shift Keying (FSK) is proposed. The information modulated baseband signal is added to the selected spectrum contour of the dolphin whistle with a certain weight to obtain the synthetic contour. Then generate the synthetic whistle to transmit the information. The receiver extracts the received synthetic whistle, and coherently multiples it with the local whistle, whose contour has a fix frequency difference from the selected whistle contour. A low-pass filtering is adopted to obtain the FSK signal, which is used for demodulation. The bionic effect is analyzed through Time-Frequency Correlation Coefficient (TFCC) and Mel frequency cepstrum Distance (MelD). Simulation and sea trial verified its feasibility. A reliable communication can be achieved at 2km when the symbol width is 0.1s and the TFCC is over 0.99. The low complexity makes the proposed bionic UAC method more suitable for implement, which provides technical support for the practical application of bionic UAC.
  • loading
  • [1]
    QARABAQI P and STOJANOVIC M. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels[J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 701–717. doi: 10.1109/JOE.2013.2278787
    [2]
    HEIDEMANN J, STOJANOVIC M, and ZORZI M. Underwater sensor networks: Applications, advances and challenges[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2012, 370(1958): 158–175. doi: 10.1098/rsta.2011.0214
    [3]
    JIANG Shengming. On securing underwater acoustic networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 729–752. doi: 10.1109/COMST.2018.2864127
    [4]
    YANG T C and YANG Wenbin. Low probability of detection underwater acoustic communications using direct-sequence spread spectrum[J]. The Journal of the Acoustical Society of America, 2008, 124(6): 3632–3647. doi: 10.1121/1.2996329
    [5]
    QU Fengzhong, YANG Liuqing, and YANG T C. High reliability direct-sequence spread spectrum for underwater acoustic communications[C]. Proceedings of the OCEANS 2009, Biloxi, USA, 2009: 1–6.
    [6]
    DIAMANT R and LAMPE L. Low probability of detection for underwater acoustic communication: A review[J]. IEEE Access, 2018, 6: 19099–19112. doi: 10.1109/ACCESS.2018.2818110
    [7]
    LIU Songzuo, QIAO Gang, and ISMAIL A. Covert underwater acoustic communication using dolphin sounds[J]. The Journal of the Acoustical Society of America, 2013, 133(4): EL300–EL306. doi: 10.1121/1.4795219
    [8]
    QIAO Gang, BILAL M, LIU Songzuo, et al. Biologically Inspired covert underwater acoustic communication—A review[J]. Physical Communication, 2018, 30: 107–114. doi: 10.1016/j.phycom.2018.07.007
    [9]
    马天龙. 仿鲸目动物哨声水声通信技术研究[D]. [硕士论文], 哈尔滨工程大学, 2017.

    MA Tianlong. Bionic underwater acoustic communication by mimicking cetaceans whistles[D]. [Master dissertation], Harbin Engineering University, 2017.
    [10]
    HAN Xiao, YIN Jingwei, DU Pengyu, et al. Experimental demonstration of underwater acoustic communication using bionic signals[J]. Applied Acoustics, 2014, 78: 7–10. doi: 10.1016/j.apacoust.2013.10.009
    [11]
    韩笑, 殷敬伟, 郭龙祥, 等. 基于差分Pattern时延差编码和海豚whistles信号的仿生水声通信技术研究[J]. 物理学报, 2013, 62(22): 224301. doi: 10.7498/aps.62.224301

    HAN Xiao, YIN Jingwei, GUO Longxiang, et al. Research on bionic underwater acoustic communication technology based on differential Pattern time delay shift coding and dolphin whistles[J]. Acta Physica Sinica, 2013, 62(22): 224301. doi: 10.7498/aps.62.224301
    [12]
    刘凇佐, 刘冰洁, 尹艳玲, 等. M元仿海豚叫声隐蔽水声通信[J]. 哈尔滨工程大学学报, 2014, 35(1): 119–125.

    LIU Songzuo, LIU Bingjie, YIN Yanling, et al. M-ray covert underwater acoustic communication by mimicking dolphin sounds[J]. Journal of Harbin Engineering University, 2014, 35(1): 119–125.
    [13]
    JIANG Jiajia, WANG Xianquan, DUAN Fajie, et al. Bio-inspired steganography for secure underwater acoustic communications[J]. IEEE Communications Magazine, 2018, 56(10): 156–162. doi: 10.1109/MCOM.2018.1601228
    [14]
    ELMOSLIMANY A, ZHOU Meng, DUMAN T M, et al. An underwater acoustic communication scheme exploiting biological sounds[J]. Wireless Communications and Mobile Computing, 2016, 16(15): 2194–2211. doi: 10.1002/wcm.2676
    [15]
    LIU Songzuo, MA Tianlong, QIAO Gang, et al. Biologically inspired covert underwater acoustic communication by mimicking dolphin whistles[J]. Applied Acoustics, 2017, 120: 120–128. doi: 10.1016/j.apacoust.2017.01.018
    [16]
    JIANG Jiajia, LI Chunyue, WANG Xianquan, et al. Covert underwater communication based on combined encoding of diverse time-frequency characteristics of sperm whale clicks[J]. Applied Acoustics, 2021, 171: 107660. doi: 10.1016/j.apacoust.2020.107660
    [17]
    QIAO Gang, MA Tianlong, LIU Songzuo, et al. A frequency hopping pattern inspired bionic underwater acoustic communication[J]. Physical Communication, 2021, 46: 101288. doi: 10.1016/j.phycom.2021.101288
    [18]
    杨少凡, 郭中源, 贾宁, 等. 海豚Whistles为信息载体的正交频分复用循环移位键控扩频伪装水声通信[J]. 声学学报, 2018, 43(5): 753–761. doi: 10.15949/j.cnki.0371-0025.2018.05.004

    YANG Shaofan, GUO Zhongyuan, JIA Ning, et al. Orthogonal frequency division multiplexing cyclic shift keying spread spectrum camouflaging underwater acoustic communication with dolphin whistles as information carrier[J]. Acta Acustica, 2018, 43(5): 753–761. doi: 10.15949/j.cnki.0371-0025.2018.05.004
    [19]
    杨少凡, 郭中源, 肖东, 等. 伪装水声通信信号波形设计及其应用[J]. 声学学报, 2019, 44(1): 86–95. doi: 10.15949/j.cnki.0371-0025.2019.01.010

    YANG Shaofan, GUO Zhongyuan, XIAO Dong, et al. Waveform design of camouflage underwater acoustic communication and its application[J]. Acta Acustica, 2019, 44(1): 86–95. doi: 10.15949/j.cnki.0371-0025.2019.01.010
    [20]
    BUCK J R and MORGENBESSER H B. Synthesis and modification of the whistles of the bottlenose dolphin, Tursiops truncatus[J]. The Journal of the Acoustical Society of America, 2000, 108(1): 407–416. doi: 10.1121/1.429474
    [21]
    WATKINS W. Watkins marine mammal sound database[EB/OL].https://cis.whoi.edu/science/B/whalesounds/about.cfm, 2021.
    [22]
    BERGER C R, ZHOU Shengli, PREISIG J C, et al. Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1708–1721. doi: 10.1109/TSP.2009.2038424
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (1335) PDF downloads(191) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return