Advanced Search
Volume 44 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
YAO Yuanyuan, WU Yunga, DONG Yaoyao, FENG Zhiyong, WEI Zhiqing. Performance Analysis of Unmanned Aerial Vehicle Swarms Air-to-ground Networking under Distance-constrained Clustering Strategy[J]. Journal of Electronics & Information Technology, 2022, 44(3): 951-959. doi: 10.11999/JEIT211312
Citation: YAO Yuanyuan, WU Yunga, DONG Yaoyao, FENG Zhiyong, WEI Zhiqing. Performance Analysis of Unmanned Aerial Vehicle Swarms Air-to-ground Networking under Distance-constrained Clustering Strategy[J]. Journal of Electronics & Information Technology, 2022, 44(3): 951-959. doi: 10.11999/JEIT211312

Performance Analysis of Unmanned Aerial Vehicle Swarms Air-to-ground Networking under Distance-constrained Clustering Strategy

doi: 10.11999/JEIT211312
Funds:  Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund (L192022), The Science and Technology Project of Beijing Municipal Education Commission (KM202011232002), Beijing Natural Science Foundation-Jointly Funded Project by the Municipal Education Commission (KZ201911232046), The Key Laboratory of Universal Wireless Communications (BUPT), Ministry of Education (KFKT-2020105)
  • Received Date: 2021-11-23
  • Accepted Date: 2022-01-05
  • Rev Recd Date: 2022-01-03
  • Available Online: 2022-01-27
  • Publish Date: 2022-03-28
  • A scenario of Unmanned Aerial Vehicle (UAV) assisted energy-constrained low-power Internet of Things (IoT) nodes for data transmission is considered, to address the problem of UAV coverage overlapped caused by the traditional Matérn Cluster Process (MCP) modeling, a Matérn Cluster under Distance Constraint (MCDC) strategy is proposed. The strategy uses the Matérn cluster process with distance constraints to model the locations of UAVs and IoT nodes, and achieves a significant reduction in redundant coverage. Under the MCDC strategy, the energy-constrained IoT nodes first harvest energy from the radio frequency signal sent by the UAV, and then use the harvested energy to transmit information to the UAV. The transmission probability of the IoT nodes, the outage performance, and the network throughput are analyzed; The time allocation ratio of the harvesting phase, the transmission power of the UAV, and the impact of the density of IoT nodes on the network performance are measured. Finally, the theoretical results are verified by simulation.
  • loading
  • [1]
    贾向东, 路艺, 纪澎善, 等. 大规模无人机协助的多层异构网络设计及性能研究[J]. 电子与信息学报, 2021, 43(9): 2632–2639. doi: 10.11999/JEIT200443

    JIA Xiangdong, LU Yi, JI Pengshan, et al. Design of large-scale UAV-assisted multi-tier heterogeneous networks and performance research[J]. Journal of Electronics &Information Technology, 2021, 43(9): 2632–2639. doi: 10.11999/JEIT200443
    [2]
    JABBAR H, SONG Y S, and JEONG T T. RF energy harvesting system and circuits for charging of mobile devices[J]. IEEE Transactions on Consumer Electronics, 2010, 56(1): 247–253. doi: 10.1109/TCE.2010.5439152
    [3]
    LU Xiao, WANG Ping, NIYATO D, et al. Wireless charging technologies: Fundamentals, standards, and network applications[J]. IEEE Communications Surveys & Tutorials, 2016, 18(2): 1413–1452. doi: 10.1109/COMST.2015.2499783
    [4]
    MA Dong, LAN Guohao, HASSAN M, et al. Sensing, computing, and communications for energy harvesting IoTs: A survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 1222–1250. doi: 10.1109/COMST.2019.2962526
    [5]
    CHO S, LEE K, KANG B, et al. Weighted harvest-then-transmit: UAV-enabled wireless powered communication networks[J]. IEEE Access, 2018, 6: 72212–72224. doi: 10.1109/ACCESS.2018.2882128
    [6]
    YANG Zhaohui, XU Wei, and SHIKH-BAHAEI M. Energy efficient UAV communication with energy harvesting[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1913–1927. doi: 10.1109/TVT.2019.2961993
    [7]
    DU Yao, YANG Kun, WANG Kezhi, et al. Joint resources and workflow scheduling in UAV-enabled wirelessly-powered MEC for IoT systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 10187–10200. doi: 10.1109/TVT.2019.2935877
    [8]
    XU Jie, ZENG Yong, and ZHANG Rui. UAV-enabled wireless power transfer: Trajectory design and energy optimization[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5092–5106. doi: 10.1109/TWC.2018.2838134
    [9]
    CHEN Ruirui, LI Xinyan, SUN Yanjing, et al. Multi-UAV coverage scheme for average capacity maximization[J]. IEEE Communications Letters, 2020, 24(3): 653–657. doi: 10.1109/LCOMM.2019.2962774
    [10]
    WANG Jian, LIU Yongxin, NIU Shuteng, et al. Extensive throughput enhancement for 5G-enabled UAV swarm networking[J]. IEEE Journal on Miniaturization for Air and Space Systems, 2021, 2(4): 199–208. doi: 10.1109/JMASS.2021.3067861
    [11]
    MIAO Jiansong, WANG Pengjie, ZHANG Qian, et al. Throughput maximization for multi-UAV enabled millimeter wave WPCN: Joint time and power allocation[J]. China Communications, 2020, 17(10): 142–156. doi: 10.23919/JCC.2020.10.010
    [12]
    JI Baofeng, LI Yuqi, ZHOU Benchuan, et al. Performance analysis of UAV relay assisted IoT communication network enhanced with energy harvesting[J]. IEEE Access, 2019, 7: 38738–38747. doi: 10.1109/ACCESS.2019.2906088
    [13]
    CHEN Qinbo. Joint position and resource optimization for multi-UAV-aided relaying systems[J]. IEEE Access, 2020, 8: 10403–10415. doi: 10.1109/ACCESS.2020.2965162
    [14]
    李莉, 叶鹏, 彭张节, 等. 一种超密集异构网中联合干扰协调方法研究[J]. 电子与信息学报, 2019, 41(1): 9–15. doi: 10.11999/JEIT180290

    LI Li, YE Peng, PENG Zhangjie, et al. Research on joint interference coordination approach in ultra-dense heterogeneous network[J]. Journal of Electronics &Information Technology, 2019, 41(1): 9–15. doi: 10.11999/JEIT180290
    [15]
    ZHOU Lai, YANG Zhi, ZHOU Shidong, et al. Coverage probability analysis of UAV cellular networks in urban environments[C]. 2018 IEEE International Conference on Communications Workshops, Kansas City, USA, 2018.
    [16]
    LIU Chang, DING Ming, MA Chuan, et al. Performance analysis for practical unmanned aerial vehicle networks with LoS/NLoS transmissions[C]. 2018 IEEE International Conference on Communications Workshops, Kansas City, USA, 2018.
    [17]
    SAHA C, AFSHANG M, and DHILLON H S. Enriched K-tier HetNet model to enable the analysis of user-centric small cell deployments[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1593–1608. doi: 10.1109/TWC.2017.2649495
    [18]
    QIU Chen, WEI Zhiqing, FENG Zhiyong, et al. Joint resource allocation, placement and user association of multiple UAV-mounted base stations with in-band wireless backhaul[J]. IEEE Wireless Communications Letters, 2019, 8(6): 1575–1578. doi: 10.1109/LWC.2019.2928544
    [19]
    QIU Chen, WEI Zhiqing, YUAN Xin, et al. Multiple UAV-mounted base station placement and user association with joint fronthaul and backhaul optimization[J]. IEEE Transactions on Communications, 2020, 68(9): 5864–5877. doi: 10.1109/TCOMM.2020.3001136
    [20]
    MOHAMED Z and AÏSSA S. Leveraging UAVs with intelligent reflecting surfaces for energy-efficient communications with cell-edge users[C]. 2020 IEEE International Conference on Communications Workshops, Dublin, Ireland, 2020: 1–6.
    [21]
    HAYAJNEH A M, ZAIDI S A R, MCLERNON D C, et al. Performance analysis of UAV enabled disaster recovery network: A stochastic geometric framework based on matern cluster processes[C]. The 3rd International Conference on Intelligent Signal Processing, London, UK, 2017: 1–6.
    [22]
    ZHANG Shangwei and LIU Jiajia. Analysis and optimization of multiple unmanned aerial vehicle-assisted communications in post-disaster areas[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 12049–12060. doi: 10.1109/TVT.2018.2871614
    [23]
    LEE S, ZHANG Rui, and HUANG Kaibin. Opportunistic wireless energy harvesting in cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(9): 4788–4799. doi: 10.1109/TWC.2013.072613.130323
    [24]
    ANDREWS J G, GUPTA A K, and DHILLON H S. A primer on cellular network analysis using stochastic geometry[J]. arXiv: 1604.03183, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (546) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return