Advanced Search
Volume 45 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
ZOU Yaobin, ZHANG Jinyu, ZHOU Huan, SUN Shuifa, XIA Ping. Tsallis Entropy Thresholding Based on Multi-scale and Multi-direction Gabor Transform[J]. Journal of Electronics & Information Technology, 2023, 45(2): 707-717. doi: 10.11999/JEIT211306
Citation: ZOU Yaobin, ZHANG Jinyu, ZHOU Huan, SUN Shuifa, XIA Ping. Tsallis Entropy Thresholding Based on Multi-scale and Multi-direction Gabor Transform[J]. Journal of Electronics & Information Technology, 2023, 45(2): 707-717. doi: 10.11999/JEIT211306

Tsallis Entropy Thresholding Based on Multi-scale and Multi-direction Gabor Transform

doi: 10.11999/JEIT211306
Funds:  The National Natural Science Foundation of China (62172255, 61871258)
  • Received Date: 2021-11-22
  • Accepted Date: 2022-05-17
  • Rev Recd Date: 2022-05-04
  • Available Online: 2022-05-25
  • Publish Date: 2023-02-07
  • To deal with automatic threshold selection issue in non-modal, unimodal, bimodal or multimodal situations within a unified framework, a Tsallis Entropy thresholding segmentation method based on Multi-scale and multi-direction Gabor transform (MGTE) is proposed. The multi-scale product image is first obtained by the Gabor transform and then the inner and outer contour images are used to reconstruct the one-dimensional histogram from the multi-scale product image. Based on the reconstruction of the one-dimensional histogram, the Tsallis entropy calculation model is utilized to select 4 thresholds by maximizing Tsallis entropy in 4 different directions, and finally the weighted sum of the 4 thresholds is used as the final threshold. The proposed method is compared with 5 segmentation methods on 4 synthetic images and 40 real-world images. The results show that the proposed method has no advantage in computational efficiency, but its adaptability and segmentation accuracy are significantly improved.
  • loading
  • [1]
    吴一全, 孟天亮, 吴诗婳. 图像阈值分割方法研究进展20年(1994–2014)[J]. 数据采集与处理, 2015, 30(1): 1–23. doi: 10.16337/j.1004-9037.2015.01.001

    WU Yiquan, MENG Tianliang, and WU Shihua. Research progress of image thresholding methods in recent 20 years (1994–2014)[J]. Journal of Data Acquisition and Processing, 2015, 30(1): 1–23. doi: 10.16337/j.1004-9037.2015.01.001
    [2]
    范九伦, 雷博. 倒数粗糙熵图像阈值化分割算法[J]. 电子与信息学报, 2020, 42(1): 214–221. doi: 10.11999/JEIT190559

    FAN Jiulun and LEI Bo. Image thresholding segmentation method based on reciprocal rough entropy[J]. Journal of Electronics &Information Technology, 2020, 42(1): 214–221. doi: 10.11999/JEIT190559
    [3]
    SEZGIN M and SANKUR B. Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging, 2004, 13(1): 146–168. doi: 10.1117/1.1631315
    [4]
    KAPUR J N, SAHOO P K, and WONG A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics, and Image Processing, 1985, 29(3): 273–285. doi: 10.1016/0734-189X(85)90125-2
    [5]
    吴一全, 张金矿. 二维直方图θ划分最大Shannon熵图像阈值分割[J]. 物理学报, 2010, 59(8): 5487–5495. doi: 10.7498/aps.59.5487

    WU Yiquan and ZHANG Jinkuang. Image thresholding based on θ-division of 2-D histogram and maximum Shannon entropy[J]. Acta Physica Sinica, 2010, 59(8): 5487–5495. doi: 10.7498/aps.59.5487
    [6]
    SAHOO P, WILKINS C, and YEAGER J. Threshold selection using Rényi's entropy[J]. Pattern Recognition, 1997, 30(1): 71–84. doi: 10.1016/S0031-3203(96)00065-9
    [7]
    WEI Wei. Gray image thresholding based on three-dimensional Rényi entropy[C]. The 6th International Congress on Image and Signal Processing, Hangzhou, China, 2013: 599–603.
    [8]
    龙建武, 申铉京, 魏巍, 等. 一种结合纹理信息的三维Rényi熵阈值分割算法[J]. 小型微型计算机系统, 2011, 32(5): 948–952.

    LONG Jianwu, SHEN Xuanjing, WEI Wei, et al. 3-D Rényi entropy thresholding algorithm combining with the texture[J]. Journal of Chinese Computer Systems, 2011, 32(5): 948–952.
    [9]
    DE ALBUQUERQUE M P, ESQUEF I A, MELLO A R G, et al. Image thresholding using Tsallis entropy[J]. Pattern Recognition Letters, 2004, 25(9): 1059–1065. doi: 10.1016/j.patrec.2004.03.003
    [10]
    吴一全, 张金矿. 二维直方图θ-划分Tsallis熵阈值分割算法[J]. 信号处理, 2010, 26(8): 1162–1168. doi: 10.3969/j.issn.1003-0530.2010.08.008

    WU Yiquan and ZHANG Jinkuang. Image thresholding based on 2-D histogram θ-division and Tsallis entropy[J]. Signal Processing, 2010, 26(8): 1162–1168. doi: 10.3969/j.issn.1003-0530.2010.08.008
    [11]
    YE Zhiwei, YANG Juan, WANG Mingwei, et al. 2D Tsallis entropy for image segmentation based on modified chaotic bat algorithm[J]. Entropy, 2018, 20(4): 239. doi: 10.3390/e20040239
    [12]
    ZHANG Hong. One-dimensional Arimoto entropy threshold segmentation method based on parameters optimization[C]. 2011 International Conference on Applied Informatics and Communication, Xi’an, China, 2011: 573–581.
    [13]
    卓问, 曹治国, 肖阳. 基于二维Arimoto熵的阈值分割方法[J]. 模式识别与人工智能, 2009, 22(2): 208–213. doi: 10.3969/j.issn.1003-6059.2009.02.007

    ZHUO Wen, CAO Zhiguo, and XIAO Yang. Image thresholding based on two-dimensional Arimoto entropy[J]. Pattern Recognition and Artificial Intelligence, 2009, 22(2): 208–213. doi: 10.3969/j.issn.1003-6059.2009.02.007
    [14]
    NIE Fangyan, ZHANG Pingfeng, LI Jianqi, et al. A novel generalized entropy and its application in image thresholding[J]. Signal Processing, 2017, 134: 23–34. doi: 10.1016/j.sigpro.2016.11.004
    [15]
    SPARAVIGNA A C. Bi-level image thresholding obtained by means of Kaniadakis entropy[EB/OL]. https://arxiv.org/vc/arxiv/papers/1502/1502.04500v2.pdf, 2021.
    [16]
    LI C H and LEE C K. Minimum cross entropy thresholding[J]. Pattern Recognition, 1993, 26(4): 617–625. doi: 10.1016/0031-3203(93)90115-D
    [17]
    AL-OSAIMI G and EL-ZAART A. Minimum cross entropy thresholding for SAR images[C]. The 3rd International Conference on Information and Communication Technologies: From Theory to Applications, Damascus, Syria, 2008: 1245–1250.
    [18]
    ZHU Zhenfeng, LU Hanqing, and ZHAO Yao. Scale multiplication in odd Gabor transform domain for edge detection[J]. Journal of Visual Communication and Image Representation, 2007, 18(1): 68–80. doi: 10.1016/j.jvcir.2006.10.001
    [19]
    LINDEBERG T. Scale-space for discrete signals[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(3): 234–254. doi: 10.1109/34.49051
    [20]
    SUYARI H and TSUKADA M. Law of error in Tsallis statistics[J]. IEEE Transactions on Information Theory, 2005, 51(2): 753–757. doi: 10.1109/TIT.2004.840862
    [21]
    闫海霞, 赵晓晖. 基于Tsallis熵差的遥感图像边缘检测方法[J]. 计算机应用研究, 2009, 26(9): 3598–3600. doi: 10.3969/j.issn.1001-3695.2009.09.117

    YAN Haixia and ZHAO Xiaohui. Edge detection method based on Tsallis entropy difference of remote sensing image[J]. Application Research of Computers, 2009, 26(9): 3598–3600. doi: 10.3969/j.issn.1001-3695.2009.09.117
    [22]
    TSALLIS C. Possible generalization of Boltzmann-Gibbs statistics[J]. Journal of Statistical Physics, 1988, 52(1/2): 479–487. doi: 10.1007/BF01016429
    [23]
    [24]
    CAI Hongmin, YANG Zhong, CAO Xinhua, et al. A new iterative triclass thresholding technique in image segmentation[J]. IEEE Transactions on Image Processing, 2014, 23(3): 1038–1046. doi: 10.1109/TIP.2014.2298981
    [25]
    LEI Tao, JIA Xiaohong, ZHANG Yanning, et al. Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5): 3027–3041. doi: 10.1109/TFUZZ.2018.2796074
    [26]
    WANG Dong and WANG Xiaoping. The Iterative Convolution-Thresholding Method (ICTM) for image segmentation[EB/OL]. https://arxiv.org/pdf/1904.10917.pdf, 2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (744) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return