Advanced Search
Volume 44 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
LIU Hai, LI Jianhui, MENG Xu, ZHOU Bin, FANG Guangyou. An Analogical Experiment of Mars Rover Penetrating Radar Onboard Chinese “Zhurong” Martian Rover on Dry/Water Ice Detection[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1336-1342. doi: 10.11999/JEIT211286
Citation: LIU Hai, LI Jianhui, MENG Xu, ZHOU Bin, FANG Guangyou. An Analogical Experiment of Mars Rover Penetrating Radar Onboard Chinese “Zhurong” Martian Rover on Dry/Water Ice Detection[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1336-1342. doi: 10.11999/JEIT211286

An Analogical Experiment of Mars Rover Penetrating Radar Onboard Chinese “Zhurong” Martian Rover on Dry/Water Ice Detection

doi: 10.11999/JEIT211286
Funds:  The National Natural Science Foundation of China (41874120, 51978182, 5202010500), Funding by Science and Technology Projects in Guangzhou (20210201444), Shenzhen Science and Technology Program (KQTD20180412181337494)
  • Received Date: 2021-10-30
  • Accepted Date: 2022-03-15
  • Rev Recd Date: 2022-03-11
  • Available Online: 2022-03-16
  • Publish Date: 2022-04-18
  • On May 22, 2021, China's first Mars Rover "Zhurong" began its exploration on Mars surface. One of the payloads is Mars Rover Penetrating Radar (RoPeR), which composes of a high frequency channel and a low frequency channel. The scientific object of RoPeR is to reveal the subsurface structures of landing site and detect potentially buried water/dry ice. The high frequency channel is equipped with four Vivaldi antennas working at the frequency band of 0.45~2.15 GHz, which can record radar echo in four different polarization channels. An analogical experiment is performed to analyze the reflection signals from a dry ice and a water ice samples. The experimental results show that dry ice and water ice have different polarization scattering characteristics and $ H - \alpha $ polarization decomposition can discriminate between dry ice and water ice.
  • loading
  • [1]
    PERMINOV V G. The Difficult Road to Mars: A Brief History of Mars Exploration in the Soviet Union[M]. Washington: National Aeronautics and Space Administration Headquarters, 1999: 381–390.
    [2]
    JAKOSKY B M and MELLON M T. Special issue: Water on Mars[J]. Physics Today, 2004, 57(4): 71–76. doi: 10.1063/1.1752425
    [3]
    WATTERS T R, CAMPBELL B, CARTER L, et al. Radar sounding of the medusae fossae formation Mars: Equatorial ice or dry, low-density deposits?[J]. Science, 2007, 318(5853): 1125–1128. doi: 10.1126/science.1148112
    [4]
    BYRNE S. The polar deposits of Mars[J]. Annual Review of Earth and Planetary Sciences, 2009, 37: 535–560. doi: 10.1146/annurev.earth.031208.100101
    [5]
    PHILLIPS R J, ZUBER M T, SMREKAR S E, et al. Mars North Polar deposits: Stratigraphy, age, and geodynamical response[J]. Science, 2008, 320(5880): 1182–1185. doi: 10.1126/science.1157546
    [6]
    CASTALDO L, MÈGE D, GURGUREWICZ J, et al. Global permittivity mapping of the Martian surface from SHARAD[J]. Earth and Planetary Science Letters, 2017, 462: 55–65. doi: 10.1016/j.jpgl.2017.01.012
    [7]
    LIU Hai, LONG Zhijun, HAN Feng, et al. Frequency-domain reverse-time migration of ground penetrating radar based on layered medium Green’s functions[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(8): 2957–2965. doi: 10.1109/JSTARS.2018.2841361
    [8]
    刘海, 岳云鹏, 韩峰, 等. 嫦娥五号探月雷达的数据处理方法研究[J]. 雷达科学与技术, 2021, 19(1): 14–22. doi: 10.3969/j.issn.1672-2337.2021.01.003

    LIU Hai, YUE Yunpeng, HAN Feng, et al. Data processing methods for Chang'E-5 lunar penetrating radar[J]. Radar Science and Technology, 2021, 19(1): 14–22. doi: 10.3969/j.issn.1672-2337.2021.01.003
    [9]
    LU W, JI Y C, ZHOU B, et al. Design of an array antenna system for Chang’E-5 LRPR[C]. Proceedings of the 2016 16th International Conference on Ground Penetrating Radar, Hong Kong, China, 2016: 1–4.
    [10]
    ZHANG Jinhai, YANG Wei, HU Sen, et al. Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(17): 5342–5347. doi: 10.1073/pnas.1503082112
    [11]
    XIAO Long, ZHU Peimin, FANG Guangyou, et al. A young multilayered terrane of the northern Mare Imbrium revealed by Chang’E-3 mission[J]. Science, 2015, 347(6227): 1226–1229. doi: 10.1126/science.1259866
    [12]
    China National Space Administration. Chinese Mars mission sends photos of the Red Planet[EB/OL]. http://www.cnsa.gov.cn/english/n6465652/n6465653/c6813041/content.html, 2022.
    [13]
    ZHOU Bin, SHEN Shaoxiang, LU Wei, et al. The Mars rover subsurface penetrating radar onboard China’s Mars 2020 mission[J]. Earth and Planetary Physics, 2020, 4(4): 345–354. doi: 10.26464/epp2020054
    [14]
    ZOU Yongliao, ZHU Yan, BAI Yunfei, et al. Scientific objectives and payloads of Tianwen-1, China’s first Mars exploration mission[J]. Advances in Space Research, 2021, 67(2): 812–823. doi: 10.1016/j.asr.2020.11.005
    [15]
    UTREJA L R. Lunar environment[J]. Applied Mechanics Reviews, 1993, 46(6): 278–284. doi: 10.1115/1.3120356
    [16]
    ZUBRIN R and WAGNER R. The Case for Mars: The Plan to Settle the Red Planet and Why We Must[M]. New York: The Free Press, 2011: 32–32.
    [17]
    苏兆忠, 孔旭. 微波器件低气压放电的机理分析与防护方法[J]. 电子质量, 2019(5): 74–76. doi: 10.3969/j.issn.1003-0107.2019.05.019

    SU Zhaozhong and KONG Xu. Low pressure discharge mechanism and corresponding protection method of the microwave device[J]. Electronics Quality, 2019(5): 74–76. doi: 10.3969/j.issn.1003-0107.2019.05.019
    [18]
    CHINNERY H E, HAGERMANN A, KAUFMANN E, et al. The penetration of solar radiation into carbon dioxide ice[J]. Journal of Geophysical Research:Planets, 2018, 123(4): 864–871. doi: 10.1002/2018JE005539
    [19]
    KAUFMANN E and HAGERMANN A. Experimental investigation of insolation-driven dust ejection from Mars’ CO2 ice caps[J]. Icarus, 2017, 282: 118–126. doi: 10.1016/j.icarus.2016.09.039
    [20]
    LIU Hai and SATO M. Determination of the phase center position and delay of a Vivaldi antenna[J]. IEICE Electronics Express, 2013, 10(21): 20130573. doi: 10.1587/elex.10.20130573
    [21]
    FENG Xuan, ZOU Lilong, LU Qi, et al. Calibration with high-order terms of polarimetric GPR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(3): 717–722. doi: 10.1109/JSTARS.2012.2191143
    [22]
    CHEN Siwei, LI Yongzhen, WANG Xuesong, et al. Modeling and interpretation of scattering mechanisms in polarimetric synthetic aperture radar: Advances and perspectives[J]. IEEE Signal Processing Magazine, 2014, 31(4): 79–89. doi: 10.1109/MSP.2014.2312099
    [23]
    FENG Xuan, YU Yue, LIU Cai, et al. Combination of h-alpha decomposition and migration for enhancing subsurface target classification of GPR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 4852–4861. doi: 10.1109/TGRS.2015.2411572
    [24]
    CLOUDE S R and POTTIER E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68–78. doi: 10.1109/36.551935
    [25]
    LIU Hai, LONG Zhijun, TIAN Bo, et al. Two-dimensional reverse-time migration applied to GPR with a 3-D-to-2-D data conversion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(10): 4313–4320. doi: 10.1109/JSTARS.2017.2734098
    [26]
    CHINNERY H E, HAGERMANN A, KAUFMANN E, et al. The penetration of solar radiation into granular carbon dioxide and water ices of varying grain sizes on Mars[J]. Journal of Geophysical Research:Planets, 2020, 125(4): e2019JE006097. doi: 10.1029/2019JE006097
    [27]
    CHINNERY H E, HAGERMANN A, KAUFMANN E, et al. The penetration of solar radiation into water and carbon dioxide snow, with reference to Mars[J]. Journal of Geophysical Research:Planets, 2019, 124(2): 337–348. doi: 10.1029/2018JE005771
    [28]
    黄文峰, 张丽敏, 李志军, 等. 天然和人造淡水冰内部结构特征的对比研究[C]. 寒区水科学及国际河流研究系列丛书2·寒区水循环及冰工程研究——第2届“寒区水资源及其可持续利用”学术研讨会论文集, 黑河, 2009.

    HUANG Wenfeng, ZHANG Limin, LI Zhijun, et al. Study on inner structure of natural and artificial fresh ice[C]. Proceedings of the 2nd Symposium on “Water Resources and Their Sustainable Utilization in Cold Regions”, Heihe, China, 2009.
    [29]
    ILIESCU D, BAKER I, and CULLEN D. Preliminary microstructural and microchemical observations on pond and river accretion ice[J]. Cold Regions Science and Technology, 2002, 35(2): 81–99. doi: 10.1016/S0165-232X(02)00042-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (861) PDF downloads(114) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return