Citation: | CAI Nian, XIAO Meng, XIAO Pan, ZHOU Shuai, QIU Baojun, WANG Han. Adaptive Inspection for Void Defects Inside Solder Joints of Chip Resistors[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1617-1624. doi: 10.11999/JEIT211246 |
[1] |
ILLÉS B, KRAMMER O, and GÉCZY A. Reflow Soldering: Apparatus and Heat Transfer Processes[M]. Amsterdam: Elsevier, 2020: 5–8.
|
[2] |
SAID A F, BENNETT B L, KARAM L J, et al. Automated void detection in solder balls in the presence of vias and other artifacts[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2(11): 1890–1901. doi: 10.1109/TCPMT.2011.2182613
|
[3] |
WILD P, LORENZ D, GRÖZINGER T, et al. Effect of voids on thermo-mechanical reliability of chip resistor solder joints: Experiment, modelling and simulation[J]. Microelectronics Reliability, 2018, 85: 163–175. doi: 10.1016/j.microrel.2018.04.014
|
[4] |
BUŠEK D, DUŠEK K, RŮŽIČKA D, et al. Flux effect on void quantity and size in soldered joints[J]. Microelectronics Reliability, 2016, 60: 135–140. doi: 10.1016/j.microrel.2016.03.009
|
[5] |
WANG Yu, WANG Mingquan, and ZHANG Zhijie. Microfocus X-ray printed circuit board inspection system[J]. Optik, 2014, 125(17): 4929–4931. doi: 10.1016/j.ijleo.2014.04.027
|
[6] |
PENG Shaohu and DO NAM H. Void defect detection in ball grid array X-ray images using a new blob filter[J]. Journal of Zhejiang University SCIENCE C, 2012, 13(11): 840–849. doi: 10.1631/jzus.C1200065
|
[7] |
MOURI M, KATO Y, YASUKAWA H, et al. A study of using nonnegative matrix factorization to detect solder-voids from radiographic images of solder[C]. The 2014 IEEE 23rd International Symposium on Industrial Electronics, Istanbul, Turkey, 2014: 1074–1079.
|
[8] |
NUANPRASERT S, BABA S, and SUZUKI T. A simple automated void defect detection for poor contrast x-ray images of BGA[C]. The 3rd International Conference on Industrial Application Engineering, Kitakyushu, Japan, 2015.
|
[9] |
MOORE T D, VANDERSTRAETEN D, and FORSSELL P M. Three-dimensional X-ray laminography as a tool for detection and characterization of BGA package defects[J]. IEEE Transactions on Components and Packaging Technologies, 2002, 25(2): 224–229. doi: 10.1109/TCAPT.2002.1010010
|
[10] |
NEELURU V K and AHUJA V. Void region segmentation in ball grid array using u-net approach and synthetic data[J]. arXiv: 1907.04222, 2019.
|
[11] |
AKDENİZ C T, DOKUR Z, and ÖLMEZ T. Detection of BGA solder defects from X-ray images using deep neural network[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2020, 28(4): 2020–2029. doi: 10.3906/elk-1910-135
|
[12] |
DING Keyan, XIAO Linfang, and WENG Guirong. Active contours driven by local pre-fitting energy for fast image segmentation[J]. Pattern Recognition Letters, 2018, 104: 29–36. doi: 10.1016/j.patrec.2018.01.019
|
[13] |
HE Kaiming and SUN Jian. Fast guided filter[J]. arXiv: 1505.00996, 2015.
|
[14] |
LI Chunming, XU Chenyang, GUI Changfeng, et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE Transactions on Image Processing, 2010, 19(12): 3243–3254. doi: 10.1109/TIP.2010.2069690
|
[15] |
DING Keyan, XIAO Linfang, and WENG Guirong. Active contours driven by region-scalable fitting and optimized Laplacian of Gaussian energy for image segmentation[J]. Signal Processing, 2017, 134: 224–233. doi: 10.1016/j.sigpro.2016.12.021
|
[16] |
GAO Shangbing, YANG Jian, and YAN Yunyang. A novel multiphase active contour model for inhomogeneous image segmentation[J]. Multimedia Tools and Applications, 2014, 72(3): 2321–2337. doi: 10.1007/s11042-013-1553-2
|
[17] |
WANG Lei, CHANG Yan, WANG Hui, et al. An active contour model based on local fitted images for image segmentation[J]. Information Sciences, 2017, 418/419: 61–73. doi: 10.1016/j.ins.2017.06.042
|
[18] |
ZHAO Wencheng, XU Xianze, ZHU Yanyan, et al. Active contour model based on local and global Gaussian fitting energy for medical image segmentation[J]. Optik, 2018, 158: 1160–1169. doi: 10.1016/j.ijleo.2018.01.004
|
[19] |
罗钧, 杨永松, 侍宝玉. 基于改进的自适应差分演化算法的二维Otsu多阈值图像分割[J]. 电子与信息学报, 2019, 41(8): 2017–2024. doi: 10.11999/JEIT180949
LUO Jun, YANG Yongsong, and SHI Baoyu. Multi-threshold image segmentation of 2D Otsu based on improved adaptive differential evolution algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(8): 2017–2024. doi: 10.11999/JEIT180949
|
[20] |
SHANG Caijie, ZHANG Dong, and YANG Yan. A gradient-based method for multilevel thresholding[J]. Expert Systems with Applications, 2021, 175: 114845. doi: 10.1016/j.eswa.2021.114845
|