Advanced Search
Volume 44 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
WANG Bowen, SUN Yanjing. Coalitional Graph Game Based Topology Control Algorithm for Unmanned Aerial Vehicle Emergency Networks in Underground Space[J]. Journal of Electronics & Information Technology, 2022, 44(3): 996-1005. doi: 10.11999/JEIT211205
Citation: WANG Bowen, SUN Yanjing. Coalitional Graph Game Based Topology Control Algorithm for Unmanned Aerial Vehicle Emergency Networks in Underground Space[J]. Journal of Electronics & Information Technology, 2022, 44(3): 996-1005. doi: 10.11999/JEIT211205

Coalitional Graph Game Based Topology Control Algorithm for Unmanned Aerial Vehicle Emergency Networks in Underground Space

doi: 10.11999/JEIT211205
Funds:  The National Natural Science Foundation of China (62101556, 62071472), The Natural Science Foundation of Jiangsu Province (BK20210489), The Future Network Scientific Research Fund Project (FNSRFP-2021-YB-12), The Program for “Industrial IoT and Emergency Collaboration” Innovative Research Team in CUMT (2020ZY002)
  • Received Date: 2021-11-02
  • Accepted Date: 2022-02-21
  • Rev Recd Date: 2022-02-16
  • Available Online: 2022-02-28
  • Publish Date: 2022-03-28
  • Frequent disasters and accidents in underground space pose severe challenges to the rapid reconfiguration of emergency communication networks and the real-time transmission of disaster information in extreme environments. It is urgent to build the Unmanned Aerial Vehicle (UAV) emergency communication networks with the capabilities of dynamic reconstruction and real-time response. For the problems of frequent failure of network connectivity caused by dynamic uncertainties such as rapidly changing topologies, after extracting and simplifying the key topology information using graph theory, the Coalitional Game (CG) is combined with time-varying topology graphs and the Coalitional Graph Game based Adaptive Topology Control (CGG-ATC) algorithm, which can maintain the connectivity through collaborative establishment of Long-range Links (LLs), is proposed. The simulation results shows that the proposed algorithm can achieve the better trade-off among connectivity, average transmission delay, and link cost compared with other existing algorithms. Besides, due to its fast convergence speed, the network decision is elastic and adaptive with the rapid topology changes when considering the dynamic uncertainties of post-disaster scenarios.
  • loading
  • [1]
    胡青松, 杨维, 丁恩杰, 等. 煤矿应急救援通信技术的现状与趋势[J]. 通信学报, 2019, 40(5): 163–179. doi: 10.11959/j.issn.1000-436x.2019123

    HU Qingsong, YANG Wei, DING Enjie, et al. State-of-the-art and trend of emergency rescue communication technologies for coal mine[J]. Journal on Communications, 2019, 40(5): 163–179. doi: 10.11959/j.issn.1000-436x.2019123
    [2]
    YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6
    [3]
    徐常志, 靳一, 李立, 等. 面向6G的星地融合无线传输技术[J]. 电子与信息学报, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363

    XU Changzhi, JIN Yi, LI Li, et al. Wireless transmission technology of satellite-terrestrial integration for 6G mobile communication[J]. Journal of Electronics &Information Technology, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363
    [4]
    DEEPAK G C, LADAS A, SAMBO Y A, et al. An Overview of post-disaster emergency communication systems in the future networks[J]. IEEE Wireless Communications, 2019, 26(6): 132–139. doi: 10.1109/MWC.2019.1800467
    [5]
    中华人民共和国应急管理部. 应急管理部信息化发展战略规划框架(2018-2022年)[EB/OL]. http://yjglt.jiangxi.gov.cn/art/2020/6/19/art_37823_1917424.html, 2020.
    [6]
    PARK S and CHOI Y. Applications of unmanned aerial vehicles in mining from exploration to reclamation: A review[J]. Minerals, 2020, 10(8): 663. doi: 10.3390/min10080663
    [7]
    ZHAO Nan, LU Weidang, SHENG Min, et al. UAV-assisted emergency networks in disasters[J]. IEEE Wireless Communications, 2019, 26(1): 45–51. doi: 10.1109/MWC.2018.1800160
    [8]
    BEKMEZCI İ, SAHINGOZ O K, and TEMEL Ş. Flying ad-hoc networks (FANETs): A survey[J]. Ad Hoc Networks, 2013, 11(3): 1254–1270. doi: 10.1016/j.adhoc.2012.12.004
    [9]
    LAKEW D S, SA’AD U, DAO N N, et al. Routing in flying ad hoc networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 1071–1120. doi: 10.1109/COMST.2020.2982452
    [10]
    AZIZ A A, SEKERCIOGLU Y A, FITZPATRICK P, et al. A survey on distributed topology control techniques for extending the lifetime of battery powered wireless sensor networks[J]. IEEE Communications Surveys & Tutorials, 2013, 15(1): 121–144. doi: 10.1109/SURV.2012.031612.00124
    [11]
    QI Xiaohan, YUAN Peng, ZHANG Qinyu, et al. CDS-based topology control in FANETs via power and position optimization[J]. IEEE Wireless Communications Letters, 2020, 9(12): 2015–2019. doi: 10.1109/LWC.2020.3009666
    [12]
    LJUBIĆ I and RAIDL G R. A memetic algorithm for minimum-cost vertex-biconnectivity augmentation of graphs[J]. Journal of Heuristics, 2003, 9(5): 401–427. doi: 10.1023/B:HEUR.0000004810.27436.30
    [13]
    QI Xiaohan, JIN Haojie, ZHANG Qinyu, et al. A distributed bi-connectivity maintenance mechanism for flying ad hoc network Topology[C]. IEEE/CIC International Conference on Communications in China, Changchun, China, 2019: 961–966.
    [14]
    SAAD W, HAN Zhu, DEBBAH M, et al. Coalitional game theory for communication networks[J]. IEEE Signal Processing Magazine, 2009, 26(5): 77–97. doi: 10.1109/MSP.2009.000000
    [15]
    MYERSON R B. Graphs and cooperation in games[J]. Mathematics of Operations Research, 1977, 2(3): 225–229. doi: 10.1287/moor.2.3.225
    [16]
    ZHAO Yulei, LI Yong, MAO Hongliang, et al. Social-community-aware long-range link establishment for multihop D2D communication networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(11): 9372–9385. doi: 10.1109/TVT.2016.2516248
    [17]
    WANG Bowen, SUN Yanjing, DO-DUY T, et al. Adaptive D-hop connected dominating set in highly dynamic flying ad-hoc networks[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(3): 2651–2664. doi: 10.1109/TNSE.2021.3103873
    [18]
    吴坤, 谭劭昌. 基于改进鲸鱼优化算法的无人机航路规划[J]. 航空学报, 2020, 41(S2): 724286. doi: 10.7527/s1000-6893.2020.24286

    WU Kun and TAN Shaochang. Path planning of UAVs based on improved whale optimization algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724286. doi: 10.7527/s1000-6893.2020.24286
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (600) PDF downloads(118) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return